Longest Increasing Subsequences

题目连接:

https://www.codechef.com/SNCKPA16/problems/MAKELIS

Description

大厨最近了解了经典的最长上升子序列问题。然而,大厨发现,虽然最长上升子序列的长度

是唯一的,但子序列本身却不一定唯一。比如,序列 [1, 3, 2, 4] 的最长上升子序列有两个:[1, 3, 4]

和 [1, 2, 4]。

大厨在这个方向上多做了些研究,然后提出了下面的这个问题:

给定 K,输出一个整数 N 以及一个 1 ∼ N 的排列,使得这一排列包含恰好 K 个最长上升子

序列。大厨要求 1 ≤ N ≤ 100,不然问题就太简单了。

如果有多种可能的答案,输出任意一种即可。

Input

输入的第一行包含一个整数 T,表示测试数据的组数。接下来是 T 组数据。

每组数据仅有一行,包含一个整数 K。

Output

对于每组数据,输出两行。第一行包含一个整数 N,第二行包含 N 个整数,即 1 ∼ N 的一个

排列,以空格分隔。

• 1 ≤ T ≤ 2 · 104

• 1 ≤ K ≤ 105

Sample Input

2

1

2

Sample Output

5

1 2 3 4 5

4

1 3 2 4

Hint

题意

题解:

很有趣的题,一般来说第一想法是分解质因数,变成乘积的形式,我不知道这样搞不搞得出来,很麻烦的样子……

这道题的正确套路是分解进制,考虑你现在是用m进制去处理这个k,你可以得到b[0]b[1]b[2]这个玩意儿,表示这个m进制的每一位是啥

你现在做出来了b0,那么你就在b[0]前面扔m个小的倒叙的,然后再后面扔一个最小的,再倒叙扔b[1]个倒叙的

这样你就得到了mb[0]+b[1]了,然后一直递归下去,你就构造出来了m进制的

经过计算,发现m=6的时候,恰好能够构造出来,所以就做出来了~

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
int k;
int pri[maxn];
vector<int>p;
void init()
{
for(int i=2;i<maxn;i++)
{
if(pri[i]==0)
{
for(int j=i+i;j<maxn;j+=i)
pri[j]=1;
}
}
}
int cnt[maxn],tot=0;
int solve()
{
scanf("%d",&k);
if(k==1)
{
cout<<"1"<<endl;
cout<<"1"<<endl;
return 1;
}
if(k==2)
{
cout<<"2"<<endl;
cout<<"2 1"<<endl;
return 2;
}
p.clear();
tot=0;
while(k)
{
cnt[tot++]=k%6;
k/=6;
}
reverse(cnt+0,cnt+tot);
for(int i=cnt[0];i;i--)
p.push_back(i);
for(int i=1;i<tot;i++)
{
if(cnt[i]==0){
for(int j=0;j<p.size();j++)
p[j]+=6;
reverse(p.begin(),p.end());
for(int j=1;j<=6;j++)
p.push_back(j);
reverse(p.begin(),p.end());
continue;
} for(int j=0;j<p.size();j++)p[j]+=6;
reverse(p.begin(),p.end());
for(int j=1;j<=6;j++)
p.push_back(j);
reverse(p.begin(),p.end()); for(int j=0;j<p.size();j++)p[j]+=(cnt[i]+i);
for(int j=1;j<=i;j++)p.push_back(j);
for(int j=cnt[i]+i;j>i;j--)
p.push_back(j); }
cout<<p.size()<<endl;
for(int i=0;i<p.size();i++)
cout<<p[i]<<" ";
cout<<endl;
return p.size();
}
int main()
{
init();
int t;
scanf("%d",&t);
while(t--)
solve();
}

SnackDown Longest Increasing Subsequences 构造题的更多相关文章

  1. Longest Increasing Subsequences(最长递增子序列)的两种DP实现

    一.本文内容 最长递增子序列的两种动态规划算法实现,O(n^2)及O(nlogn).     二.问题描述 最长递增子序列:给定一个序列,从该序列找出最长的 升序/递增 子序列. 特点:1.子序列不要 ...

  2. 【二分】【动态规划】Gym - 101156E - Longest Increasing Subsequences

    求最长上升子序列方案数. 转载自:http://blog.csdn.net/u013445530/article/details/47958617,如造成不便,请博主联系我. 数组A包含N个整数(可能 ...

  3. 【Codeforces】Gym 101156E Longest Increasing Subsequences LIS+树状数组

    题意 给定$n$个数,求最长上升子序列的方案数 根据数据范围要求是$O(n\log n)$ 朴素的dp方程式$f_i=max(f_j+1),a_i>a_j$,所以记方案数为$v_i$,则$v_i ...

  4. LintCode刷题笔记--Longest Increasing Subsequence

    标签: 动态规划 描述: Given a sequence of integers, find the longest increasing subsequence (LIS). You code s ...

  5. 【刷题-LeetCode】300. Longest Increasing Subsequence

    Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...

  6. 673. Number of Longest Increasing Subsequence最长递增子序列的数量

    [抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...

  7. LeetCode Number of Longest Increasing Subsequence

    原题链接在这里:https://leetcode.com/problems/number-of-longest-increasing-subsequence/description/ 题目: Give ...

  8. LeetCode 673. Number of Longest Increasing Subsequence

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  9. 【LeetCode】673. Number of Longest Increasing Subsequence 解题报告(Python)

    [LeetCode]673. Number of Longest Increasing Subsequence 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https:/ ...

随机推荐

  1. mysql5.7.10 源码编译安装记录 (centos6.4)【转】

    一.准备工作 1.1 卸载系统自带mysql 查看系统是否自带MySQL, 如果有就卸载了, 卸载方式有两种yum, rpm, 这里通过yum卸载 rpm -qa | grep mysql //查看系 ...

  2. GBDT+LR simple例子

    卧槽,本来猜GBDT获取的组合特征,需要自己去解析GBDT的树,scikit learn里面竟然直接调用apply函数就可以了 # 弱分类器的数目 n_estimator = 10 # 随机生成分类数 ...

  3. centos 6.x 部署uwsgi+flask项目

    一.项目背景 1. 公司需求要做一个在线统计页面; 2. 统计在线人数,进行人数数据展示; 3. 类似QQ官网在线人数 二.测试环境 [root@linux-node2 ~]# cat /etc/*r ...

  4. 题解-python-CodeForces 227B

    用hash解决.我python代码消耗很多内存,好在代码比C++短很多 n = int(raw_input()) mylist = raw_input().split(' ') i = 0 zid = ...

  5. 一步一步学习IdentityServer3 (13) 令牌

    IdentityServer3中客户端保护了授权资源,不难看出在IdentityServer3中,有这样一个设置 AllowedScopes = new List<string> { &q ...

  6. html-注册邮箱

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. CentOS7.5之Sqoop1.4.7的安装使用

    一 Sqoop简介 Apache Sqoop(TM) 于 2012 年 3 月孵化出来,现在是一个顶级的 Apache 项目.是一种旨在有效地在 Apache Hadoop 和诸如关系数据库等结构化数 ...

  8. day5模块学习 -- time、datetime时间模块

    1.定义 模块:用来从逻辑上组织python(变量,函数,类,逻辑:实现一个功能)代码,本质就是.py结尾的python文件(文件名:test.py,对应的模块名test) 包:用来从逻辑上组织模块的 ...

  9. 【AtCoder】AGC023 A-F题解

    可以说是第一场AGC了,做了三道题之后还有30min,杠了一下D题发现杠不出来,三题滚粗了 rating起步1300+,感觉还是很菜... 只有三题水平显然以后还会疯狂--啊(CF的惨痛经历) 改题的 ...

  10. loadrunner录制时,设置能不记录所有的事件

    loadrunner录制时,设置能不记录所有的事件 可以做如下两点设置: 1. 在record option下的recording选项卡下选择html advance,在script type下选择A ...