【BZOJ4903/UOJ300】【CTSC2017】吉夫特
Description
传送门
简述题意:给一个序列,询问有多少子序列满足其中不会出现\(a\choose b\)是偶数的情况,其中\(a\)在\(b\)前面。
Solution
首先探究组合数的奇偶性问题。我们用Lucas定理展开组合数,可以发现一些有趣的性质:
\]
后一个括号的值可以直接算:\({0\choose 0}={1\choose 0}={1\choose 1}=1,\;\;{0\choose 1}=0\)。这相当于\(a\)和\(b\)的二进制最末位的某种计算。
而想象一下第一个括号递归计算的过程,实际上是移除了\(a\)和\(b\)的二进制最后一位继续计算。到底层时,其值必定是1。
所以决定总体奇偶的地方在于第二个括号会不会取0。也就是会不会出现\(a\)末位为0,\(b\)末位为1的情况。
这整一个过程的实质是什么?相当于比较\(a\)和\(b\)的每一位对应二进制。一旦出现\(a\)某一位为0,\(b\)对应位为1,则整体为偶数。否则整体为奇数。
再进一步考虑,这种条件,相当于判断\(b\)的1位集合是否是\(a\)的1位集合的子集,则整体奇数,否则整体偶数。
有趣的是,这种关系具有传递性:如果\(a\)包含\(b\),那么\(a\)包含以\(b\)开头的合法子序列的每个元素。问题变得非常简单,只需要考虑从哪一个子序列的开头转移:设\(f[a]\)表示以\(a\)为开头的子序列个数。枚举\(a\)的子集\(b\),如果\(b\)在\(a\)后面,则\(f[a]+=f[b]\)。
总时间复杂度为\(\mathcal O(3^{\log_2n})\)。
Code
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=211990,S=233335,MOD=1e9+7;
int n,a[N],p[S],f[S];
inline int plu(int x,int y){return (x+y)%MOD;}
inline void upd(int &x,int y){x=plu(x,y);}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",a+i);
int ans=-n;
for(int i=n;i>=1;i--){
f[a[i]]=1;
for(int j=(a[i]-1)&a[i];j;j=(j-1)&a[i])
upd(f[a[i]],f[j]);
upd(ans,f[a[i]]);
}
printf("%d\n",plu(ans,MOD));
return 0;
}
【BZOJ4903/UOJ300】【CTSC2017】吉夫特的更多相关文章
- BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】
BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...
- [UOJ300][CTSC2017]吉夫特
uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...
- bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...
- 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp
题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...
- bzoj千题计划247:bzoj4903: [Ctsc2017]吉夫特
http://uoj.ac/problem/300 预备知识: C(n,m)是奇数的充要条件是 n&m==m 由卢卡斯定理可以推出 选出的任意相邻两个数a,b 的组合数计算C(a,b)必须是奇 ...
- BZOJ4903: [Ctsc2017]吉夫特
传送门 可以发现,\(\binom{n}{m}\equiv 1(mod~2)\) 当且仅当 \(m~and~n~=~m\) 即 \(m\) 二进制下为 \(n\) 的子集 那么可以直接写一个 \(3^ ...
- [CTSC2017]吉夫特
Description: 给定一个序列\(a_1,a_2,a_3...a_n\) 求有多少个不上升子序列: \(a_{b1},a_{b_2}...\) 满足 \(C_{a_{b1}}^{a_{b2}} ...
- BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)
题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...
- uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划
题目传送门 戳此处转移 题目大意 给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b ...
随机推荐
- .Net 如何访问主流的各大数据库
做过开发的都知道,.NET基本可以理解是和MSSQL,windows服务器属于一个好的搭档,正如PHP和MYSQL,LIUNX等也可以理解是一个完美搭配:但是在实际的开发中并不完全是这样的,如果你是学 ...
- 文本编辑器 vi/vim 的使用
文本编辑器 vi/vim 一.启动与退出 1. vim 2. vim 文件名(可以是存在的文件,也可以是不在的文件) 3.退出 :q 或者:x 在非“插入”模式二.vi/vim的工作模式 1.正常 ...
- 六大iT公司的组织结构
- Netty源码分析第1章(Netty启动流程)---->第5节: 绑定端口
Netty源码分析第一章:Netty启动步骤 第五节:绑定端口 上一小节我们学习了channel注册在selector的步骤, 仅仅做了注册但并没有监听事件, 事件是如何监听的呢? 我们继续跟第一小节 ...
- django1.11入门
快速安装指南¶ 在使用Django之前,您需要安装它.我们有 完整的安装指南,涵盖所有可能性; 本指南将指导您进行简单,最小化的安装,在您完成介绍时可以正常工作. 安装Python¶ 作为一个Pyth ...
- tensorflow enqueue_many传入多个值的列表传入异常问题————Shape () must have rank at least 1
tf 的队列操作enqueue_many传入的值是列表,但是放入[]列表抛异常 File "C:\Users\lihongjie\AppData\Local\Programs\Python\ ...
- Chapter 7 面向对象分析
面向对象的分析模型由功能模型.分析对象模型.动态模型三个独立的模型组成,从软件的需求功能来看分析类可以划分为实体类.边界类和控制类三种类型.识别分析类.控制类和实体类需要充分理解系统内部的行为.一个参 ...
- linux 常用命令-配置登陆方式
使用阿里云服务器,启动实例(ubuntu 7.4,密码登录)后,通过xshell登陆,但是发现xshell中密码登录是灰色禁用的,很惆怅啊,明明设置的就是密码登录,在xshell中找了一通设置发现并没 ...
- caffe with anaconda
https://blog.csdn.net/u013498583/article/details/74231058 https://www.cnblogs.com/youxin/p/4073703.h ...
- 【动态规划】POJ-3616
一.题目 Description Bessie is such a hard-working cow. In fact, she is so focused on maximizing her pro ...