Description

有一张n×m的数表,其第i行第j列(1<=i<=n,1<=j<=m)的数值为能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

输入包含多组数据。

输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2

4 4 3

10 10 5

Sample Output

20

148

HINT

1<=n,m<=10^5 , 1<=Q<=2×10^4

Solution

莫比乌斯反演,膜拜PoPoQQQ

先不管a的限制,我们直接求数表中所有数之和\(ans'\)

设\(F(i)\)为i的约数和,\(g(i)\)为在限制n和m范围内gcd为i的对数的个数,那么

\[ans'=\sum_{i=1}^{min(n,m)}F(i)g(i)
\]

\(g(i)\)的反演已经是老套路了,直接得出\(g(i)=\sum_{i|d}\mu(\frac{d}{n})\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor\)

继续推

\[ans'=\sum_{i=1}^{min(n,m)}F(i)\sum_{i|d}\mu(\frac{d}{i})\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor=\sum_{i=1}^{min(n,m)}F(i)\sum_{k=1}^{\lfloor \frac{min(n,m)}{i} \rfloor}\mu(k)\lfloor \frac{n}{ik} \rfloor \lfloor \frac{m}{ik} \rfloor
\]

设\(T=ik\)

\[ans'=\sum_{T=1}^{min(n,m)}\lfloor \frac{n}{T} \rfloor \lfloor \frac{m}{T} \rfloor\sum_{k=1}^{\lfloor \frac{min(n,m)}{T} \rfloor}F(k)\mu(\lfloor \frac{T}{k} \rfloor)
\]

前面部分整除分块,我们只要处理出后半部分的前缀和就行了

对于\(F(k)\)直接\(O(nlog_2n)\)暴力枚举约数和它的倍数

对于\(\mu\)这就不用说了吧。。。(看之前的文章)

好的,我们把改装之后的问题解决了,可是原问题呢?

回到真正的\(ans\),因为有a的限制,所以那些\(F(i)\)大于a的是不能加贡献的

那么我们把询问按a排序,然后用树状数组维护\(F(k)\mu(\lfloor \frac{T}{k} \rfloor)\)的前缀和,只有当前询问的a大于扫描到的\(F(i)\),才把\(F(i)\)能产生的贡献加入树状数组。这样就保证了不改加入的贡献不会被加入

#include<bits/stdc++.h>
#define ll long long
const int MAXT=20000+10,MAXN=100000+10,Mod=0x7fffffff;
int T,cnt,vis[MAXN],prime[MAXN],mu[MAXN],C[MAXN],ans[MAXT],limit;
struct question{
int n,m,a;
int id;
inline bool operator < (const question &A) const{
return a<A.a;
};
};
question Q[MAXT];
struct node{
int s;
int id;
inline bool operator < (const node &A) const{
return s<A.s;
};
};
node F[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
for(register int i=1;i<=limit;++i)
for(register int j=i;j<=limit;j+=i)F[j].s+=i;
for(register int i=1;i<=limit;++i)F[i].id=i;
std::sort(F+1,F+limit+1);
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
mu[1]=1;
for(register int i=2;i<=limit;++i)
{
if(vis[i])
{
prime[++cnt]=i;
mu[i]=-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<=limit;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else break;
}
}
}
inline int lowbit(int x)
{
return x&(-x);
}
inline int sum(int x)
{
int res=0;
while(x)
{
res+=C[x];
x-=lowbit(x);
}
return res;
}
inline void add(int x,int k)
{
while(x<=limit)
{
C[x]+=k;
x+=lowbit(x);
}
}
inline int solve(int n,int m)
{
int res=0;
for(register int i=1;;)
{
if(i>min(n,m))break;
int j=min(n/(n/i),m/(m/i));
res+=(n/i)*(m/i)*(sum(j)-sum(i-1));
i=j+1;
}
return res&Mod;
}
int main()
{
read(T);
for(register int i=1;i<=T;++i)
{
read(Q[i].n);read(Q[i].m);read(Q[i].a);
Q[i].id=i;
chkmax(limit,min(Q[i].n,Q[i].m));
}
init();
std::sort(Q+1,Q+T+1);
for(register int i=1,j=1;i<=T;++i)
{
while(j<=limit&&F[j].s<=Q[i].a)
{
for(register int p=F[j].id,k=1;p<=limit;p+=F[j].id,++k)add(p,F[j].s*mu[k]);
++j;
}
ans[Q[i].id]=solve(Q[i].n,Q[i].m);
}
for(register int i=1;i<=T;++i)write(ans[i],'\n');
return 0;
}

【刷题】BZOJ 3529 [Sdoi2014]数表的更多相关文章

  1. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  2. ●BZOJ 3529 [Sdoi2014]数表

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3529 题解: 莫比乌斯反演. 按题目的意思,令$f(i)$表示i的所有约数的和,就是要求: ...

  3. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  4. bzoj 3529 [Sdoi2014]数表(莫比乌斯反演+BIT)

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...

  5. bzoj 3529: [Sdoi2014]数表

    #include<cstdio> #include<iostream> #include<algorithm> #define M 200009 //#define ...

  6. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  7. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  8. 3529: [Sdoi2014]数表 - BZOJ

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...

  9. 【BZOJ】3529: [Sdoi2014]数表

    题意:求 $$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d|(i, j)} d 且 (\sum_{d|(i, j)} d)<=a$$ n, m<=1e5,q次 ...

随机推荐

  1. gradle springboot 项目运行的三种方式

    一.java -jar 二.eclipse中 Java Application 三.命令行 gradle bootRun

  2. 我的第一个上线小程序,案例实战篇二——LayaAir游戏开始界面开发

    不知不觉我的第一个小程序已经上线一周了,uv也稳定的上升着. 很多人说我的小程序没啥用,我默默一笑,心里说:“它一直敦促我学习,敦促我进步”.我的以一个小程序初衷是经验分享,目前先把经验分享到博客园, ...

  3. Linux命令的那些事(二)

    回顾Linux(一) 学习了以下命令: mkdir/rmdir/ls/rm/pwd/cd/touch/tree/man/--help 想具体了解请看上一篇文章跳转 在Linux中推荐大家使用subli ...

  4. NO---20 文件上传

    文件上传是我们会经常用到的一个业务,其实在h5中新增了FormData的对象,用它来提交表单,并且可以提交二进制文件,所以今天就写写文件上传,希望可以对大家有帮助 FormData 上传文件实例 首先 ...

  5. 【Go】累加器的测试问题记录

    关于GoLang学习过程中的一个问题mark,教程上说两个累加器的地址应该是不一样的,但是实际测试出来结果一样 package main import( "fmt" ) func ...

  6. 比较undefined和“undefined”

    说实话,它们之间的区别挺明显的,我们一般认为undefined是JavaScript提供的一个“关键字”,而“undefined”却是一个字符串,只是引号的内容和undefined一样. undefi ...

  7. Metasploit漏洞利用,三个入侵主机实战案例

    受害者主机 windows2003 ie模拟工具ietest ie5.5/6/7/ 漏洞:MS10_002,MS10_018,MS12-020 ---------------------------- ...

  8. ansible使用1

    常用软件安装及使用目录   ansible软件2 ### ansible软件部署安装需求#### 01. 需要有epel源 系统yum源(base epel--pip gem) sshpass---e ...

  9. “Hello World!”团队第五周第七次会议

    博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.checkout&push代码 一.会议时间 2017年11月16日  ...

  10. Java里字符串split方法

    Java中的split方法以"."切割字符串时,需要转义 String str[] = s.split("\\.");