from numpy import *
import operator
from os import listdir def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels

用到的函数。

数组的行数。

shape函数是numpy.core.fromnumeric中的函数,它的功能是查看矩阵或者数组的维数。
>>> e = eye(3)
>>> e
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
>>> e.shape
(3, 3)

>>> c = array([[1,1],[1,2],[1,3],[1,4]])
>>> c.shape
(4, 2)
>>> c.shape[0]
4
>>> c.shape[1]
2

一个单独的数值,返回值为空
>>> shape(3)
()

-------------------------------------------------
tile函数位于python模块 numpy.lib.shape_base中,
他的功能是重复某个数组。比如tile(A,n),功能是将数组A重复n次,
构成一个新的数组,我们还是使用具体的例子来说明问题:

>>> tile(1,2)
array([1, 1])

>>> tile((1,2,3),3)
array([1, 2, 3, 1, 2, 3, 1, 2, 3])

>>> b=[1,3,5]
>>> tile(b,[2,3])
array([[1, 3, 5, 1, 3, 5, 1, 3, 5],
[1, 3, 5, 1, 3, 5, 1, 3, 5]])

----------------------------------------
python中的几个括号
python中的小括号( ):代表tuple元组数据类型,元组是一种不可变序列
>>> tup = (1,2,3)
>>> tup
(1, 2, 3)
>>>
>>> ()#空元组
()
>>>
>>> 55,#一个值的元组
(55,)
python中的中括号[ ]:代表list列表数据类型,列表是一种可变的序列。其创建方法即简单又特别,像下面一样:
>>> list('python')
['p', 'y', 't', 'h', 'o', 'n']

python大括号{ }花括号:代表dict字典数据类型,字典是由键对值组组成。冒号':'分开键和值,逗号','隔开组。用大括号创建的方法如下:
>>> dic={'jon':'boy','lili':'girl'}
>>> dic
{'lili': 'girl', 'jon': 'boy'}
>>>

------------------------------------------
python 自己的sum()
>>>sum([0,1,2])
3
>>> sum((2, 3, 4), 1) # 元组计算总和后再加 1
10
>>> sum([0,1,2,3,4], 2) # 列表计算总和后再加 2
12
python的 numpy当中sum()
现在对于数据的处理更多的还是numpy。
没有axis参数表示全部相加,axis=0表示按列相加,axis=1表示按照行的方向相加
>>> import numpy as np
>>> a=np.sum([[0,1,2],[2,1,3]])

>>> a
9
>>> a.shape
()

>>> a=np.sum([[0,1,2],[2,1,3]],axis=0)

>>> a

array([2, 2, 5])

>>> a.shape

(3,)

>>> a=np.sum([[0,1,2],[2,1,3]],axis=1)

>>> a

array([3, 6])

>>> a.shape

(2,)

---------------------------------------
浅述python中argsort()函数的用法 # arguments 参数
import numpy as np
x=np.array([1,4,3,-1,6,9])
x.argsort()
输出定义为y=array([3,0,2,1,4,5])。

------------------------------------
range () 函数的使用是这样的:
range(start, stop[, step]),分别是起始、终止和步长

range(3)即:从0到3,不包含3,即0,1,2
>>> for i in range(3):
print(i)
0
1
2

range(1,3) 即:从1到3,不包含3,即1,2
for i in range(1,3):
print(i)

1
2

range(1,3,2)即:从1到3,每次增加2,因为1+2=3,所以输出只有1
第三个数字2是代表步长。如果不设置,就是默认步长为1

>>> for i in range(1,3,2):
print(i)

1
如果改成range(1,5,2),就会输出1和3

>>> for i in range(1,5,2):
print(i)

1
3
-----------------------------------------
Python 字典(Dictionary) get() 函数返回指定键的值,如果值不在字典中返回默认值。

dict = {'Name': 'Zara', 'Age': 27}
print "Value : %s" % dict.get('Age')
print "Value : %s" % dict.get('Sex', "Never")

以上实例输出结果为:
Value : 27
Value : Never
----------------------------------------
Python内置的sorted()函数就可以对list进行排序:

>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]

>>> sorted(['bob', 'about', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']
默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a',结果,大写字母Z会排在小写字母a的前面。
我们给sorted传入key函数,即可实现忽略大小写的排序:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
['about', 'bob', 'Credit', 'Zoo']

要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:

>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']

operator.itemgetter函数
operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为一些序号(即需要获取的数据在对象中的序号),下面看例子。

a = [1,2,3]
>>> b=operator.itemgetter(1) //定义函数b,获取对象的第1个域的值
>>> b(a)
2
>>> b=operator.itemgetter(1,0) //定义函数b,获取对象的第1个域和第0个的值
>>> b(a)
(2, 1)

要注意,operator.itemgetter函数获取的不是值,而是定义了一个函数,通过该函数作用到对象上才能获取值。

op={'1':(1,0,6),'3':(0,45,8),'2':(2,34,10)}
lp3=sorted(op.items(),key=operator.itemgetter(0),reverse=True)
print(lp3)
输出:[('3', (0, 45, 8)), ('2', (2, 34, 10)), ('1', (1, 0, 6))]
lp3=sorted(op.items(),key=operator.itemgetter(1),reverse=False)
输出:[('3', (0, 45, 8)), ('1', (1, 0, 6)), ('2', (2, 34, 10))]
------------------------------------------------------

语句classList = [example[-1] for example in dataSet]作用为:
将dataSet中的数据先按行依次放入example中,然后取得example中的example[-1]元素,放入列表classList中

linux下代码

KNN.py

#! /usr/bin/python
#coding:utf-8
print 'hello'
from numpy import *
import operator #创建一个数据集,包含2个类别共4个样本
def createDataSet():
# 生成一个矩阵,每行表示一个样本
group = array([[1.0,0.9],[1.0,1.0],[0.1,0.2],[0.0,0.1]])
# 4个样本分别所属的类别
labels = ['A', 'A', 'B', 'B']
return group, labels # KNN分类算法函数定义
def KNNClassify(newInput, dataSet, labels, k):
numSamples = dataSet.shape[0] #shape[0]表示行数 ## step1:计算距离
# tile(A, reps):构造一个矩阵,通过A重复reps次得到
# the following copy numSamples rows for dataSet
diff = tile(newInput, (numSamples, 1)) -dataSet #按元素求差值
squareDiff = diff ** 2 #将差值平方
squareDist = sum(squareDiff, axis = 1) # 按行累加 ##step2:对距离排序
# argsort() 返回排序后的索引值
sortedDistIndices = argsort(squareDist)
classCount = {} # define a dictionary (can be append element)
for i in xrange(k):
##step 3: 选择k个最近邻
voteLabel = labels[sortedDistIndices[i]] ## step 4:计算k个最近邻中各类别出现的次数
# when the key voteLabel is not in dictionary classCount,get()
# will return 0
classCount[voteLabel] = classCount.get(voteLabel, 0) + 1
##step 5:返回出现次数最多的类别标签
maxCount = 0
for key, value in classCount.items():
if value > maxCount:
maxCount = value
maxIndex = key
return maxIndex

测试代码

testKNN.py

#! /usr/bin/python
#coding:utf-8
import KNN
from numpy import *
#生成数据集和类别标签
dataSet,labels = KNN.createDataSet()
#定义一个未知类别的数据
testX = array([1.2, 1.0])
k=3
print dataSet
#调用分类函数对未知数据分类
outputLabel = KNN.KNNClassify(testX, dataSet, labels, 3)
print "Your input is:", testX, " and classified to class:", outputLabel testX = array([0.1, 0.3])
outputLabel = KNN.KNNClassify(testX,dataSet, labels, 3)
print "Your input is:", testX, "and classified to class:", outputLabel

k最近邻算法(kNN)的更多相关文章

  1. 转载: scikit-learn学习之K最近邻算法(KNN)

    版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...

  2. 机器学习【一】K最近邻算法

    K最近邻算法 KNN 基本原理 离哪个类近,就属于该类   [例如:与下方新元素距离最近的三个点中,2个深色,所以新元素分类为深色] K的含义就是最近邻的个数.在sklearn中,KNN的K值是通过n ...

  3. 【算法】K最近邻算法(K-NEAREST NEIGHBOURS,KNN)

    K最近邻算法(k-nearest neighbours,KNN) 算法 对一个元素进行分类 查看它k个最近的邻居 在这些邻居中,哪个种类多,这个元素有更大概率是这个种类 使用 使用KNN来做两项基本工 ...

  4. 12、K最近邻算法(KNN算法)

    一.如何创建推荐系统? 找到与用户相似的其他用户,然后把其他用户喜欢的东西推荐给用户.这就是K最近邻算法的分类作用. 二.抽取特征 推荐系统最重要的工作是:将用户的特征抽取出来并转化为度量的数字,然后 ...

  5. PCB 加投率计算实现基本原理--K最近邻算法(KNN)

    PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废, 所以在生产前需计划多投一定比例的板板, 例:订单 量是5000pcs,加投3%,那 ...

  6. 图说十大数据挖掘算法(一)K最近邻算法

    如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法. 先来一张图,请分辨它是什么水果 很多同学不假思索,直接回答:“菠萝”!!! 仔细看看同学们,这是菠萝么?那再看下边这这张图 ...

  7. 《算法图解》——第十章 K最近邻算法

    第十章    K最近邻算法 1 K最近邻(k-nearest neighbours,KNN)——水果分类 2 创建推荐系统 利用相似的用户相距较近,但如何确定两位用户的相似程度呢? ①特征抽取 对水果 ...

  8. [笔记]《算法图解》第十章 K最近邻算法

    K最近邻算法 简称KNN,计算与周边邻居的距离的算法,用于创建分类系统.机器学习等. 算法思路:首先特征化(量化) 然后在象限中选取目标点,然后通过目标点与其n个邻居的比较,得出目标的特征. 余弦相似 ...

  9. K最近邻算法项目实战

    这里我们用酒的分类来进行实战练习 下面来代码 1.把酒的数据集载入到项目中 from sklearn.datasets import load_wine #从sklearn的datasets模块载入数 ...

随机推荐

  1. PHP处理表单数据的一个安全回顾(记录教训)

    曾经看过一个安全文章中写过这么一条 表单输入数据要做 htmlspecialchars_decode 表单输出数据要做htmlspecialchars 当时还不是很理解为什么,自己也没遇到问题,所以就 ...

  2. 关于php的array_diff和array_diff_assoc的使用总结

    关于php的array_diff和array_diff_assoc的使用总结 2015-11-07 17:01 184人阅读 评论(0) 收藏 举报  分类: php学习感想(1)  版权声明:本文为 ...

  3. MathExam任务一

    小学一二年级数学计算题 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 60 35 • Es ...

  4. 敏捷开发与XP实践

    北京电子科技学院(BESTI) 实  验  报  告 课程: Java        班级:1352          姓名:黄伟业         学号:20135215 成绩:           ...

  5. Alpha版会议总结

    目前的进度: 实现了文字备忘的录入: 实现了提醒功能: 实现了可视化界面: 语音录入功能还没有完成: 界面相当粗糙: 遇到的问题: 语音录入按钮按下后没有反应,目前没有解决思路和方法. 原本的解屏功能 ...

  6. Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp+搜索

    题目链接: http://codeforces.com/problemset/problem/258/B B. Little Elephant and Elections time limit per ...

  7. 【Coursera】因子分析模型

    一.协方差矩阵 协方差矩阵为对称矩阵. 在高斯分布中,方差越大,数据分布越分散,方差越小发,数据分布越集中. 在协方差矩阵中,假设矩阵为二维,若第二维的方差大于第一维的方差,则在图像上的体现就是:高斯 ...

  8. tomcat启动问题排查

    遇到tomcat错误时不一定是tomcat的配置问题,还有可能是项目的配置问题.检查下xml的servlet配置是不是出了问题. tomcat8.0使用注解的方式帮我注册了servlet了,这时候已经 ...

  9. Spring下使用开发webservice

    依赖包 <!-- CXF Dependencies --> <dependency> <groupId>org.apache.cxf</groupId> ...

  10. 减小Delphi 2010/delphi XE编译出来的文件大小

    1.禁用RTTI 禁用的方法很简单,就是要在工程(dpr文件中.Delphi2010下项目文件是dproj文件,但dpr文件仍然是默认的编写代码的项目文件)的Uses语句前添加下面的定义就可以了: { ...