解题:POI 2007 Tourist Attractions
事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸)
先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态,然后就是状压dp辣。
设$dp[s][i]$表示状态为$s$时处在点$i$的最短路,就可以$O(2^kk^2)$转移了,注意最好减一些不合法状态,因为这时间挺危险的=。=
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=,K=,inf=0x3f3f3f3f;
struct a{int node,dist;};
bool operator < (a x,a y)
{
return x.dist>y.dist;
}
priority_queue<a> hp;
int dis[N],vis[N],ss[K],dp[(<<)+][K];
int p[N],noww[*M],goal[*M],val[*M],mat[K][K];
int n,m,k,c,t1,t2,t3,cnt,len,all,ans=inf;
void link(int f,int t,int v)
{
noww[++cnt]=p[f],p[f]=cnt;
goal[cnt]=t,val[cnt]=v;
}
void Dijkstra(int s)
{
memset(vis,,sizeof vis);
memset(dis,0x3f,sizeof dis);
dis[s]=,hp.push((a){s,});
while(!hp.empty())
{
a tt=hp.top(); hp.pop(); int tn=tt.node;
if(vis[tn]) continue ; vis[tn]=true;
for(int i=p[tn];i;i=noww[i])
if(dis[goal[i]]>dis[tn]+val[i])
dis[goal[i]]=dis[tn]+val[i],hp.push((a){goal[i],dis[goal[i]]});
}
}
int ins(int x)
{
return <<(x-);
}
int main ()
{
scanf("%d%d%d",&n,&m,&k),all=(<<k)-;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&t1,&t2,&t3);
link(t1,t2,t3),link(t2,t1,t3);
}
scanf("%d",&c);
for(int i=;i<=c;i++)
scanf("%d%d",&t1,&t2),ss[t2]|=ins(t1);
for(int i=;i<=k+;i++)
{
Dijkstra(i);
for(int j=;j<=k+;j++)
mat[i][j]=dis[j]; mat[i][]=dis[n];
}
memset(dp,0x3f,sizeof dp),dp[][]=;
for(int i=;i<=all;i++)
for(int j=;j<=k+;j++)
if(dp[i][j]!=inf)
for(int h=;h<=k+;h++)
if((i&ss[h])==ss[h])
dp[i|ins(h)][h]=min(dp[i|ins(h)][h],dp[i][j]+mat[j][h]);
for(int i=;i<=k+;i++) ans=min(ans,dp[all][i]+mat[i][]);
printf("%d",ans);
return ;
}
解题:POI 2007 Tourist Attractions的更多相关文章
- csp-s模拟48,49 Tourist Attractions,养花,画作题解
题面:https://www.cnblogs.com/Juve/articles/11569010.html Tourist Attractions: 暴力当然是dfs四层 优化一下,固定两个点,答案 ...
- 解题:POI 2007 Driving Exam
题面 有点意思的题 从一个位置$i$出发可以到达每一个位置即是从$1,n$出发可以到达$i$.然后有了一个做法:把图上下反转后建反图,这样就可以求从一个点$i$到达左右两侧的花费$dp[i][0/1] ...
- 解题:POI 2007 Weights
题面 这是个$O(nlog^2$ $n)$的解法,因为蒟蒻博主没有看懂$O(nlog$ $n)$的更优秀的解法 显然从小到大装砝码是最优的方法,又显然从大到小装容器不会使得答案变劣,还显然砝码数具有单 ...
- [POI2007]Tourist Attractions
题目大意: 给你一个$n(n\leq 2\times 10^4)$个点,$m(m\leq 2\times 10^5)$条边的带边权的连通图.其中有$k(k\leq 20)$个关键点.关键点之间有$g$ ...
- LYDSY模拟赛day1 Tourist Attractions
/* 假设路径是 a − b − c − d,考虑枚举中间这条边 b − c,计 算有多少可行的 a 和 d. 设 degx 表示点 x 的度数,那么边 b − c 对答案的贡献为 (degb − 1 ...
- [POI 2007]ZAP-Queries
Description Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency) ...
- 解题:SCOI 2007 蜥蜴
题面 拆点跑最大流 所有能跑出去的点连向汇点,容量为inf 原点连向所有初始有蜥蜴的点,容量为1 每根柱子拆成两个点“入口”和“出口”,入口向出口连容量为高度的边,出口向别的有高度的柱子的入口连容量为 ...
- [POI 2007] 办公楼
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1098 [算法] 显然 , 答案为补图的连通分量个数 用链表优化BFS , 时间复杂度 ...
- 【JZOJ4857】Tourist Attractions(Bitset)
题意:给定一个n个点的无向图,求这个图中有多少条长度为4的简单路径. n<=1500 思路: #include<map> #include<set> #include&l ...
随机推荐
- ubuntu下Open vSwitch安装
ubuntu下Open vSwitch安装 有关Open vSwitch的安装,网上有各种的教程资料,但一些已经过时,按照网上的教程,花费了大量时间,都没能安装成功.于是,通过查阅官方安装教程以及综合 ...
- 小球下落(Dropping Balls, Uva 679)
题目描述 有一棵二叉树,最大深度为D,且所有的叶子深度都相同.所有结点从上到下从左到右编号为1,2,3,-,2eD-1.在结点1处放一个小球,它会往下落.每个结点上都有一个开关,初始全部关闭,当每次有 ...
- 华为笔试——C++最高分问题
题目介绍:现在输入一组数据,写入学生的考试分数.已知学生数为N,学生编号为1到N,且0<N<=30000,每个学生都有一个分数:操作数为M且0<M<5000.输入第一行为N M ...
- spring-boot+swagger实现WebApi文档
1.引用依赖包 <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-s ...
- nodejs 中 module.exports 和 exports 的区别
1. module应该是require方法中,上下文中的对象 2. exports对象应该是上下文中引用module.exports的新对象 3. exports.a = xxx 会将修改更新到mod ...
- 微信小程序开发调试技巧
1. 查看线上小程序console a. 先打开开发小程序console b. 再打开线上小程序,此时可以查看console
- 完整Highchart JS示例
线性: $.ajax({ type:'post', url:appPages.urlListTjrll, cache:false, data:{year:year,month:month},// // ...
- 软件功能说明书beta修订
贪吃蛇(单词版)软件功能说明书beta修订 1 开发背景 “贪吃蛇”这个游戏对于80,90后的人来说是童年的记忆,可以将其说为是一个时代的经典,实现了传统贪吃蛇的游戏功能:现在人们对英语的重视程度越来 ...
- 打开ubuntu终端的两个方法【最快速】
两种快捷方法: 1. ctrl+alt+T. 2. 桌面右击,再点击终端.
- 关于react 官方脚手架使用出现的问题
首先按照官网说明,一路的安装下来,很顺利,然后开始运行吧,提示个错误,缺少index.js 文件 原来是默认给出的文件是App.js 如何更改呢 找到react-script模块文件夹config下 ...