题解

听说这是一道论文题orz

\(\sum_{k = 1}^{\infty} k(p^{k} - p^{k - 1})\)

答案是这个多项式的第\(2^N - 1\)项的系数

我们反演一下,卷积变点积

\(\hat{f_{S}} = \sum_{k = 1}^{\infty} k(\hat{p_{S}}^{k} - \hat{p_{S}}^{k - 1})\)

这是个等比数列啊,怎么推呢= =

设答案为\(S\),如果我在相邻的两项之间

例如\(2(\hat{p_{S}}^{2} - \hat{p_{S}}^{1})\)

\((\hat{p_{S}}^{1} - \hat{p_{S}}^{0})\)每项多加一个\(\hat{p_{S}}^{k}\)再减去

最后会有一个\(\infty \hat{p}^{\infty} - \hat{p_{S}}^{0}\)

所以

\(S = \infty \hat{p}^{\infty} - \sum_{k = 0}^{\infty} \hat{p}^{k}\)

\(\hat{p}S = \infty \hat{p}^{\infty} - \sum_{k = 1}^{\infty} \hat{p}^{k}\)

上式减下式

\((1 - \hat{p})S = -1\)

\(S = - \frac{1}{1 - \hat{p}}\)

所以就有

\(\hat{f} = \left\{\begin{matrix}
-\frac{1}{1 - \hat{p}} & \hat{p} < 1\\
0 & \hat{p} = 1
\end{matrix}\right.\)

最后把F反演回去就行

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
//#define ivorysi
#define MAXN 2000005
#define eps 1e-8
#define mo 974711
#define pb push_back
#define mp make_pair
#define pii pair<int,int>
#define fi first
#define se second
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
const int64 MOD = 998244353;
int N,L;
db P[MAXN],F[MAXN];
bool dcmp(db a,db b) {
return fabs(a - b) < eps;
}
template <class T>
void FMT(T *a,T ty) {
for(int i = 1 ; i < L ; i <<= 1) {
for(int j = 0 ; j < L ; ++j) {
if(j & i) {
a[j] = a[j] + ty * a[j ^ i];
}
}
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
scanf("%d",&N);
L = 1 << N;
for(int i = 0 ; i < L ; ++i) scanf("%lf",&P[i]);
FMT(P,1.0);
for(int i = 0 ; i < L ; ++i) {
if(dcmp(1.0,P[i])) F[i] = 0;
else F[i] = -1/(1 - P[i]);
}
FMT(F,-1.0);
if(dcmp(F[L - 1],0)) puts("INF");
else printf("%.6lf\n",F[L - 1]);
return 0;
}

【LOJ】#2127. 「HAOI2015」按位或的更多相关文章

  1. LOJ#2127「HAOI2015」按位或

    用$ Min-Max$容斥之后要推的东西少了好多 无耻的用实数快读抢了BZOJ.Luogu.LOJ三个$ OJ$的Rank 1 即将update:被STO TXC OTZ超了QAQ 题意:集合$ [0 ...

  2. loj#2128. 「HAOI2015」数字串拆分 矩阵乘法

    目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...

  3. 「HAOI2015」按位或

    「HAOI2015」按位或 解题思路 : 这类期望题一眼 \(\text{Min-Max}\) 容斥,只需要稍微推一下如何求 \(E(minS)\) 即可. \[ E(minS) = \frac{1} ...

  4. 【LOJ2127】「HAOI2015」按位或

    题意 刚开始你有一个数字 \(0\),每一秒钟你会随机选择一个 \([0,2^n-1]\) 的数字,与你手上的数字进行或操作.选择数字 \(i\) 的概率是 \(p[i]\) . 问期望多少秒后,你手 ...

  5. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  6. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  7. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  8. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  9. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

随机推荐

  1. python中高阶函数与装饰器

    高阶函数的定义:传入参数有函数名或者返回值有内置函数名的函数. 最简单的高阶函数: def add(x, y, f):    return f(x) + f(y) add(-5, 6, abs) 常用 ...

  2. NGINX配置PHP解析

    <?php phpinfo(); ?> location ~ \.php$ { root html; fastcgi_pass ; fastcgi_index index.php; fas ...

  3. 【测试笔记】Redis学习笔记(十二)性能测试

    http://blog.csdn.net/yangcs2009/article/details/50781530 Redis测试服务器一 redis_version:2.8.4 www@iZ23s8a ...

  4. Java并发编程原理与实战五:创建线程的多种方式

    一.继承Thread类 public class Demo1 extends Thread { public Demo1(String name) { super(name); } @Override ...

  5. 【Hadoop】Win7上搭建Hadoop开发环境,方法一

    在Win7上,编写hadoop程序 操作系统:win7 hadoop版本:CDH3u6 1.下载安装JDK,以及Eclipse 2.新建JAVA Project 3.去cloudera网站下载hado ...

  6. 20155202 2016-2017-2 《Java程序设计》第7周学习总结

    20155202 2016-2017-2 <Java程序设计>第7周学习总结 教材学习内容总结 世界协调时间:UTC 采用 闰秒修正 Epoch为某特定时代开始,时间轴上某一瞬间 Unix ...

  7. 让PHPCms内容页支持JavaScript_

    在PHPCms内容页中,出于完全考虑,默认是禁止JavaScript脚本的,所以我们在添加文章时,虽然加入了js代码,但实际上并没有起作用,而是以文本形式显示.如果要让内容页支持JavaScript, ...

  8. 苹果手机浏览器$(document).on(“click”,function(){})点击无效的问题

    <label class="js_highlight" style="display: inline-block;float: left;width: 50%;&q ...

  9. 【多视图几何】TUM 课程 第3章 透视投影

    课程的 YouTube 地址为:https://www.youtube.com/playlist?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4 .视频评论区可以找到课 ...

  10. NB-iot 和 emtc两种技术区别

    此前有报道称,工信部正在拟定推动窄频物联网(NB-IoT)标准化,并对NB-IoT模块外形.封装以及针脚定义等提出新规范.业内人士认为,标准出台后将促进物联网规模化商用全面提速,迎来行业成长爆发期. ...