Redis-benchmark测试Redis性能
Redis-benchmark是官方自带的Redis性能测试工具,可以有效的测试Redis服务的性能。
使用说明如下:
Usage: redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests]> [-k <boolean>] -h <hostname> Server hostname (default 127.0.0.1)
-p <port> Server port (default )
-s <socket> Server socket (overrides host and port)
-c <clients> Number of parallel connections (default )
-n <requests> Total number of requests (default )
-d <size> Data size of SET/GET value in bytes (default )
-k <boolean> =keep alive =reconnect (default )
-r <keyspacelen> Use random keys for SET/GET/INCR, random values for SADD
Using this option the benchmark will get/set keys
in the form mykey_rand: instead of constant
keys, the <keyspacelen> argument determines the max
number of values for the random number. For instance
if set to only rand: - rand:
range will be allowed.
-P <numreq> Pipeline <numreq> requests. Default (no pipeline).
-q Quiet. Just show query/sec values
--csv Output in CSV format
-l Loop. Run the tests forever
-t <tests> Only run the comma-separated list of tests. The test
names are the same as the ones produced as output.
-I Idle mode. Just open N idle connections and wait.
测试命令事例:
1、redis-benchmark -h 192.168.1.201 -p 6379 -c 100 -n 100000
100个并发连接,100000个请求,检测host为localhost 端口为6379的redis服务器性能
2、redis-benchmark -h 192.168.1.201 -p 6379 -q -d 100
测试存取大小为100字节的数据包的性能
3、redis-benchmark -t set,lpush -n 100000 -q
只测试某些操作的性能
4、redis-benchmark -n 100000 -q script load "redis.call('set','foo','bar')"
只测试某些数值存取的性能
测试结果分析:
requests completed in 0.30 seconds
parallel clients
bytes payload
keep alive: 0.11% <= milliseconds
86.00% <= milliseconds
90.12% <= milliseconds
96.68% <= milliseconds
99.27% <= milliseconds
99.54% <= milliseconds
99.69% <= milliseconds
99.78% <= milliseconds
99.89% <= milliseconds
100.00% <= milliseconds
33222.59 requests per second ====== PING_BULK ======
requests completed in 0.27 seconds
parallel clients
bytes payload
keep alive: 0.93% <= milliseconds
97.66% <= milliseconds
100.00% <= milliseconds
37174.72 requests per second ====== SET ======
requests completed in 0.32 seconds
parallel clients
bytes payload
keep alive: 0.22% <= milliseconds
91.68% <= milliseconds
97.78% <= milliseconds
98.80% <= milliseconds
99.38% <= milliseconds
99.61% <= milliseconds
99.72% <= milliseconds
99.83% <= milliseconds
99.94% <= milliseconds
100.00% <= milliseconds
30959.75 requests per second ====== GET ======
requests completed in 0.28 seconds
parallel clients
bytes payload
keep alive: 0.55% <= milliseconds
98.86% <= milliseconds
100.00% <= milliseconds
35971.22 requests per second ====== INCR ======
requests completed in 0.14 seconds
parallel clients
bytes payload
keep alive: 95.61% <= milliseconds
100.00% <= milliseconds
69444.45 requests per second ====== LPUSH ======
requests completed in 0.21 seconds
parallel clients
bytes payload
keep alive: 18.33% <= milliseconds
100.00% <= milliseconds
48309.18 requests per second ====== LPOP ======
requests completed in 0.23 seconds
parallel clients
bytes payload
keep alive: 0.29% <= milliseconds
99.76% <= milliseconds
100.00% <= milliseconds
44052.86 requests per second ====== SADD ======
requests completed in 0.22 seconds
parallel clients
bytes payload
keep alive: 2.37% <= milliseconds
99.81% <= milliseconds
100.00% <= milliseconds
44444.45 requests per second ====== SPOP ======
requests completed in 0.22 seconds
parallel clients
bytes payload
keep alive: 4.27% <= milliseconds
99.84% <= milliseconds
100.00% <= milliseconds
44642.86 requests per second ====== LPUSH (needed to benchmark LRANGE) ======
requests completed in 0.22 seconds
parallel clients
bytes payload
keep alive: 12.35% <= milliseconds
99.62% <= milliseconds
100.00% <= milliseconds
46082.95 requests per second ====== LRANGE_100 (first elements) ======
requests completed in 0.48 seconds
parallel clients
bytes payload
keep alive: 0.01% <= milliseconds
3.27% <= milliseconds
98.71% <= milliseconds
99.93% <= milliseconds
100.00% <= milliseconds
20964.36 requests per second ====== LRANGE_300 (first elements) ======
requests completed in 1.26 seconds
parallel clients
bytes payload
keep alive: 0.01% <= milliseconds
0.14% <= milliseconds
0.90% <= milliseconds
7.03% <= milliseconds
31.68% <= milliseconds
78.93% <= milliseconds
98.88% <= milliseconds
99.56% <= milliseconds
99.72% <= milliseconds
99.95% <= milliseconds
100.00% <= milliseconds
7961.78 requests per second ====== LRANGE_500 (first elements) ======
requests completed in 1.82 seconds
parallel clients
bytes payload
keep alive: 0.01% <= milliseconds
0.06% <= milliseconds
0.14% <= milliseconds
0.30% <= milliseconds
0.99% <= milliseconds
2.91% <= milliseconds
8.11% <= milliseconds
43.15% <= milliseconds
88.38% <= milliseconds
97.25% <= milliseconds
98.61% <= milliseconds
99.26% <= milliseconds
99.30% <= milliseconds
99.44% <= milliseconds
99.48% <= milliseconds
99.64% <= milliseconds
99.85% <= milliseconds
99.92% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.97% <= milliseconds
100.00% <= milliseconds
5491.49 requests per second ====== LRANGE_600 (first elements) ======
requests completed in 2.29 seconds
parallel clients
bytes payload
keep alive: 0.01% <= milliseconds
0.05% <= milliseconds
0.10% <= milliseconds
0.19% <= milliseconds
0.34% <= milliseconds
0.46% <= milliseconds
0.58% <= milliseconds
4.46% <= milliseconds
21.80% <= milliseconds
40.48% <= milliseconds
60.14% <= milliseconds
79.81% <= milliseconds
93.77% <= milliseconds
97.14% <= milliseconds
98.67% <= milliseconds
99.08% <= milliseconds
99.30% <= milliseconds
99.41% <= milliseconds
99.52% <= milliseconds
99.61% <= milliseconds
99.79% <= milliseconds
99.88% <= milliseconds
99.89% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
4359.20 requests per second ====== MSET ( keys) ======
requests completed in 0.37 seconds
parallel clients
bytes payload
keep alive: 0.01% <= milliseconds
2.00% <= milliseconds
18.41% <= milliseconds
88.55% <= milliseconds
96.09% <= milliseconds
99.50% <= milliseconds
99.65% <= milliseconds
99.75% <= milliseconds
99.77% <= milliseconds
99.78% <= milliseconds
99.79% <= milliseconds
99.80% <= milliseconds
99.81% <= milliseconds
99.82% <= milliseconds
99.83% <= milliseconds
99.84% <= milliseconds
99.85% <= milliseconds
99.86% <= milliseconds
99.87% <= milliseconds
99.88% <= milliseconds
99.89% <= milliseconds
99.90% <= milliseconds
99.91% <= milliseconds
99.92% <= milliseconds
99.93% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
27173.91 requests per second
Redis-benchmark测试Redis性能的更多相关文章
- YCSB benchmark测试mongodb性能——和web服务器测试性能结果类似
转自:http://blog.sina.com.cn/s/blog_48c95a190102v9kg.html YCSB(Yahoo! Cloud Serving Benchmark) ...
- YCSB benchmark测试cassandra性能——和web服务器测试性能结果类似
转自:http://www.itdadao.com/articles/c15a531189p0.html http://www.cnblogs.com/bettersky/p/6158172.html ...
- 【Redis】Redis-benchmark测试Redis性能
Redis-benchmark是官方自带的Redis性能测试工具,可以有效的测试Redis服务的性能. 使用说明如下: Usage: redis-benchmark [-h <host>] ...
- Redis(十九):Redis压力测试工具benchmark
redis-benchmark使用参数介绍 Redis 自带了一个叫 redis-benchmark 的工具来模拟 N 个客户端同时发出 M 个请求. (类似于 Apache ab 程序).你可以使用 ...
- 【Azure Redis 缓存 Azure Cache For Redis】使用Redis自带redis-benchmark.exe命令测试Azure Redis的性能
问题描述 关于Azure Redis的性能问题,在官方文档中,可以查看到不同层级Redis的最大连接数,每秒处理请求的性能. 基本缓存和标准缓存 C0 (250 MB) 缓存 - 最多支持 256 个 ...
- Azure Redis Cache (3) 在Windows 环境下使用Redis Benchmark
<Windows Azure Platform 系列文章目录> 熟悉Redis环境的读者都知道,我们可以在Linux环境里,使用Redis Benchmark,测试Redis的性能. ht ...
- 搭建和测试 Redis 主备和集群
本文章只是自我学习用,不适宜转载. 1. Redis主备集群 1.1 搭建步骤 机器:海航云虚机(2核4GB内存),使用 Centos 7.2 64bit 操作系统,IP 分别是 192.168.10 ...
- Redis QPS测试
1.计算qps: 1)redis发布版本中自带了redis-benchmark性能测试工具,可以使用它计算qps.示例:使用50个并发连接,发出100000个请求,每个请求的数据为2kb,测试host ...
- 『性能』ServiceStack.Redis 和 StackExchange.Redis 性能比较
背景 近来,需要用到 Redis 这类缓存技术 —— MongoDB 和 Redis 没有进行过比较. 我也懒得在这些细节上 纠结那么多 —— 按照网友给出的文章,听从网友建议,选择 Redis. R ...
随机推荐
- JAVA中的GC机制详解
优秀Java程序员必须了解的GC工作原理 一个优秀的Java程序员必须了解GC的工作原理.如何优化GC的性能.如何与GC进行有限的交互,因为有一些应用程序对性能要求较高,例如嵌入式系统.实时系统等,只 ...
- HTML+AngularJS+Groovy如何实现登录功能
AngularJS是一款优秀的前端JS框架,已经被用于Google的多款产品当中.AngularJS核心特性有:MVVM.模块化.自动化双向数据绑定.语义化标签.依赖注入等.AngularJS认为声明 ...
- 使用 FocusPoint.js 实现图片的响应式裁剪
通常网站的布局都不是单一的.例如图像在电脑.平板和智能手机上可能显示的形状是不同的.特别是如果你使用的是全屏图像,在你必须使用相同的图像文件的情况下,你的主题可能会被截断或完全缺失,或者看起来很尴尬. ...
- MyEclipse之无法连接到MySQL数据库
问题描述: 在连接mysql中出现如下警告 Fri Oct 28 02:21:53 CST 2016 WARN: Establishing SSL connection without server' ...
- 最简单的轮播广告(原生JS)
改变每个图片的opacity属性:来自学友刘斌 素材图片: <!DOCTYPE html> <html lang="en"> <head> &l ...
- URL 路径长度限制(错误:指定的文件或文件夹名称太长)
本节讨论 URL 的构成.SharePoint 2010 构建 URL 的方式.URL 的编码和加长以及作为其他 URL 中的参数传递的方式. SharePoint URL 的构成 SharePoin ...
- Mac下的Parallel Windows忘记密码怎么办?
Mac机上安装了Parallel Windows,日久年深不登录结果忘记了登录密码,百爪挠心,想破脑壳试了n个密码都不行,放了一个多月也没想起来. 今天没事网上溜溜,肯定也有和我同病相怜的弟兄,果然, ...
- Android使用Fragment来实现ViewPager的功能(解决切换Fragment状态不保存)以及各个Fragment之间的通信
以下内容为原创,转载请注明:http://www.cnblogs.com/tiantianbyconan/p/3364728.html 我前两天写过一篇博客<Android使用Fragment来 ...
- Android根据字符串加载Activity和图片
根据传入的字符串跳转Activity Intent intent = new Intent(context,Class.forName("com.packname.Activity" ...
- Java中的查找算法之顺序查找(Sequential Search)
Java中的查找算法之顺序查找(Sequential Search) 神话丿小王子的博客主页 a) 原理:顺序查找就是按顺序从头到尾依次往下查找,找到数据,则提前结束查找,找不到便一直查找下去,直到数 ...