Redis-benchmark是官方自带的Redis性能测试工具,可以有效的测试Redis服务的性能。

使用说明如下:

Usage: redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests]> [-k <boolean>]

 -h <hostname>      Server hostname (default 127.0.0.1)
-p <port> Server port (default )
-s <socket> Server socket (overrides host and port)
-c <clients> Number of parallel connections (default )
-n <requests> Total number of requests (default )
-d <size> Data size of SET/GET value in bytes (default )
-k <boolean> =keep alive =reconnect (default )
-r <keyspacelen> Use random keys for SET/GET/INCR, random values for SADD
Using this option the benchmark will get/set keys
in the form mykey_rand: instead of constant
keys, the <keyspacelen> argument determines the max
number of values for the random number. For instance
if set to only rand: - rand:
range will be allowed.
-P <numreq> Pipeline <numreq> requests. Default (no pipeline).
-q Quiet. Just show query/sec values
--csv Output in CSV format
-l Loop. Run the tests forever
-t <tests> Only run the comma-separated list of tests. The test
names are the same as the ones produced as output.
-I Idle mode. Just open N idle connections and wait.

测试命令事例:

1、redis-benchmark -h 192.168.1.201 -p 6379 -c 100 -n 100000 
100个并发连接,100000个请求,检测host为localhost 端口为6379的redis服务器性能

2、redis-benchmark -h 192.168.1.201 -p 6379 -q -d 100

测试存取大小为100字节的数据包的性能

3、redis-benchmark -t set,lpush -n 100000 -q

只测试某些操作的性能

4、redis-benchmark -n 100000 -q script load "redis.call('set','foo','bar')"

只测试某些数值存取的性能

测试结果分析:

   requests completed in 0.30 seconds
parallel clients
bytes payload
keep alive: 0.11% <= milliseconds
86.00% <= milliseconds
90.12% <= milliseconds
96.68% <= milliseconds
99.27% <= milliseconds
99.54% <= milliseconds
99.69% <= milliseconds
99.78% <= milliseconds
99.89% <= milliseconds
100.00% <= milliseconds
33222.59 requests per second ====== PING_BULK ======
requests completed in 0.27 seconds
parallel clients
bytes payload
keep alive: 0.93% <= milliseconds
97.66% <= milliseconds
100.00% <= milliseconds
37174.72 requests per second ====== SET ======
requests completed in 0.32 seconds
parallel clients
bytes payload
keep alive: 0.22% <= milliseconds
91.68% <= milliseconds
97.78% <= milliseconds
98.80% <= milliseconds
99.38% <= milliseconds
99.61% <= milliseconds
99.72% <= milliseconds
99.83% <= milliseconds
99.94% <= milliseconds
100.00% <= milliseconds
30959.75 requests per second ====== GET ======
requests completed in 0.28 seconds
parallel clients
bytes payload
keep alive: 0.55% <= milliseconds
98.86% <= milliseconds
100.00% <= milliseconds
35971.22 requests per second ====== INCR ======
requests completed in 0.14 seconds
parallel clients
bytes payload
keep alive: 95.61% <= milliseconds
100.00% <= milliseconds
69444.45 requests per second ====== LPUSH ======
requests completed in 0.21 seconds
parallel clients
bytes payload
keep alive: 18.33% <= milliseconds
100.00% <= milliseconds
48309.18 requests per second ====== LPOP ======
requests completed in 0.23 seconds
parallel clients
bytes payload
keep alive: 0.29% <= milliseconds
99.76% <= milliseconds
100.00% <= milliseconds
44052.86 requests per second ====== SADD ======
requests completed in 0.22 seconds
parallel clients
bytes payload
keep alive: 2.37% <= milliseconds
99.81% <= milliseconds
100.00% <= milliseconds
44444.45 requests per second ====== SPOP ======
requests completed in 0.22 seconds
parallel clients
bytes payload
keep alive: 4.27% <= milliseconds
99.84% <= milliseconds
100.00% <= milliseconds
44642.86 requests per second ====== LPUSH (needed to benchmark LRANGE) ======
requests completed in 0.22 seconds
parallel clients
bytes payload
keep alive: 12.35% <= milliseconds
99.62% <= milliseconds
100.00% <= milliseconds
46082.95 requests per second ====== LRANGE_100 (first elements) ======
requests completed in 0.48 seconds
parallel clients
bytes payload
keep alive: 0.01% <= milliseconds
3.27% <= milliseconds
98.71% <= milliseconds
99.93% <= milliseconds
100.00% <= milliseconds
20964.36 requests per second ====== LRANGE_300 (first elements) ======
requests completed in 1.26 seconds
parallel clients
bytes payload
keep alive: 0.01% <= milliseconds
0.14% <= milliseconds
0.90% <= milliseconds
7.03% <= milliseconds
31.68% <= milliseconds
78.93% <= milliseconds
98.88% <= milliseconds
99.56% <= milliseconds
99.72% <= milliseconds
99.95% <= milliseconds
100.00% <= milliseconds
7961.78 requests per second ====== LRANGE_500 (first elements) ======
requests completed in 1.82 seconds
parallel clients
bytes payload
keep alive: 0.01% <= milliseconds
0.06% <= milliseconds
0.14% <= milliseconds
0.30% <= milliseconds
0.99% <= milliseconds
2.91% <= milliseconds
8.11% <= milliseconds
43.15% <= milliseconds
88.38% <= milliseconds
97.25% <= milliseconds
98.61% <= milliseconds
99.26% <= milliseconds
99.30% <= milliseconds
99.44% <= milliseconds
99.48% <= milliseconds
99.64% <= milliseconds
99.85% <= milliseconds
99.92% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.97% <= milliseconds
100.00% <= milliseconds
5491.49 requests per second ====== LRANGE_600 (first elements) ======
requests completed in 2.29 seconds
parallel clients
bytes payload
keep alive: 0.01% <= milliseconds
0.05% <= milliseconds
0.10% <= milliseconds
0.19% <= milliseconds
0.34% <= milliseconds
0.46% <= milliseconds
0.58% <= milliseconds
4.46% <= milliseconds
21.80% <= milliseconds
40.48% <= milliseconds
60.14% <= milliseconds
79.81% <= milliseconds
93.77% <= milliseconds
97.14% <= milliseconds
98.67% <= milliseconds
99.08% <= milliseconds
99.30% <= milliseconds
99.41% <= milliseconds
99.52% <= milliseconds
99.61% <= milliseconds
99.79% <= milliseconds
99.88% <= milliseconds
99.89% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
4359.20 requests per second ====== MSET ( keys) ======
requests completed in 0.37 seconds
parallel clients
bytes payload
keep alive: 0.01% <= milliseconds
2.00% <= milliseconds
18.41% <= milliseconds
88.55% <= milliseconds
96.09% <= milliseconds
99.50% <= milliseconds
99.65% <= milliseconds
99.75% <= milliseconds
99.77% <= milliseconds
99.78% <= milliseconds
99.79% <= milliseconds
99.80% <= milliseconds
99.81% <= milliseconds
99.82% <= milliseconds
99.83% <= milliseconds
99.84% <= milliseconds
99.85% <= milliseconds
99.86% <= milliseconds
99.87% <= milliseconds
99.88% <= milliseconds
99.89% <= milliseconds
99.90% <= milliseconds
99.91% <= milliseconds
99.92% <= milliseconds
99.93% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
27173.91 requests per second

Redis-benchmark测试Redis性能的更多相关文章

  1. YCSB benchmark测试mongodb性能——和web服务器测试性能结果类似

    转自:http://blog.sina.com.cn/s/blog_48c95a190102v9kg.html         YCSB(Yahoo! Cloud Serving Benchmark) ...

  2. YCSB benchmark测试cassandra性能——和web服务器测试性能结果类似

    转自:http://www.itdadao.com/articles/c15a531189p0.html http://www.cnblogs.com/bettersky/p/6158172.html ...

  3. 【Redis】Redis-benchmark测试Redis性能

    Redis-benchmark是官方自带的Redis性能测试工具,可以有效的测试Redis服务的性能. 使用说明如下: Usage: redis-benchmark [-h <host>] ...

  4. Redis(十九):Redis压力测试工具benchmark

    redis-benchmark使用参数介绍 Redis 自带了一个叫 redis-benchmark 的工具来模拟 N 个客户端同时发出 M 个请求. (类似于 Apache ab 程序).你可以使用 ...

  5. 【Azure Redis 缓存 Azure Cache For Redis】使用Redis自带redis-benchmark.exe命令测试Azure Redis的性能

    问题描述 关于Azure Redis的性能问题,在官方文档中,可以查看到不同层级Redis的最大连接数,每秒处理请求的性能. 基本缓存和标准缓存 C0 (250 MB) 缓存 - 最多支持 256 个 ...

  6. Azure Redis Cache (3) 在Windows 环境下使用Redis Benchmark

    <Windows Azure Platform 系列文章目录> 熟悉Redis环境的读者都知道,我们可以在Linux环境里,使用Redis Benchmark,测试Redis的性能. ht ...

  7. 搭建和测试 Redis 主备和集群

    本文章只是自我学习用,不适宜转载. 1. Redis主备集群 1.1 搭建步骤 机器:海航云虚机(2核4GB内存),使用 Centos 7.2 64bit 操作系统,IP 分别是 192.168.10 ...

  8. Redis QPS测试

    1.计算qps: 1)redis发布版本中自带了redis-benchmark性能测试工具,可以使用它计算qps.示例:使用50个并发连接,发出100000个请求,每个请求的数据为2kb,测试host ...

  9. 『性能』ServiceStack.Redis 和 StackExchange.Redis 性能比较

    背景 近来,需要用到 Redis 这类缓存技术 —— MongoDB 和 Redis 没有进行过比较. 我也懒得在这些细节上 纠结那么多 —— 按照网友给出的文章,听从网友建议,选择 Redis. R ...

随机推荐

  1. android实现两个activity数据交互

    android如何实现两个Activity数据交互?主要是根据Intent的携带功能,intent可以携带很多信息,比如Bundle,URI甚至对象(此时要序列化,并且对象里面的成员变量如果是对象,也 ...

  2. 【转】nginx优化 突破十万并发

    一.一般来说nginx 配置文件中对优化比较有作用的为以下几项: 1. worker_processes 8; nginx 进程数,建议按照cpu 数目来指定,一般为它的倍数 (如,2个四核的cpu计 ...

  3. Windows 7 性能优化

    1."计算机" 2.右键>"属性" 3."高级系统设置">"高级" 4."性能"> ...

  4. js的动态加载、缓存、更新以及复用(四)

    本来想一气呵成,把加载的过程都写了,但是卡着呢,所以只好在分成两份了. 1.页面里使用<script>来加载 boot.js . 2.然后在boot.js里面动态加载 bootLoad.j ...

  5. 钉钉如何进行PC端开发

    前段时间,用钉钉进行了服务器端的开发,对照着官方文档,感觉还是比较顺利的.后续想有时间研究一下PC端客户端的开发,看着官方文档,说的确实是比较简练,但也确实没看太明白,废了半天劲也没成功.后来经过无数 ...

  6. linux集群运维工具:pssh

    由于需要安装hadoop集群,有10台机器需要安装,一开始打算用SCP复制,后来觉得不可接受(实际现场可能数倍的机器集群,就是10台也不想干).后来在网上找了,发现了clustershell和pssh ...

  7. Android Contextual Menus之二:contextual action mode

    Android Contextual Menus之二:contextual action mode 接上文:Android Contextual Menus之一:floating context me ...

  8. Android 中的编码与解码

    前言:今天遇到一个问题,一个用户在登录的时候,出现登录失败.但是其他用户登录都是正常的,经过调试发现登录失败的用户的密码中有两个特殊字符: * .#  . 特殊符号在提交表单的时候,出现了编码不一样的 ...

  9. 高仿精仿手机版QQ空间应用源码

    说明:本次QQ空间更新了以前非常基础的代码 更新内容一 更新了登陆界面二  增加了输入时密码时和登陆成功后播放音频的效果三 增加了导航条渐隐的效果(和真实QQ空间的导航条一样,首先透明,当tablev ...

  10. UI控件闪灯

    做出点一个控件然后他和他上下左右的4个控件一起变色. #import "ViewController.h" @interface ViewController () @end @i ...