Good Luck in CET-4 Everybody!

Problem Description
大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。
“升级”?“双扣”?“红五”?还是“斗地主”?
当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、  总共n张牌;
2、  双方轮流抓牌;
3、  每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、  抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。

Good luck in CET-4 everybody!

 
Input
输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。
 
Output
如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。
 
Sample Input
1
3
 
Sample Output
Kiki
Cici
 
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm> using namespace std; int main()
{
int n;
while(scanf("%d", &n) !=EOF)
{
if(n% == )
{
printf("Cici\n");
}
else
{
printf("Kiki\n");
}
}
return ;
}

这道题的代码是推出来的,推到15然后写出来交了一发,过了!嘿嘿,爽,他们有拿Dp,博弈做的

HD1847-(博弈论??)的更多相关文章

  1. IT人生知识分享:博弈论的理性思维

    背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...

  2. [poj2348]Euclid's Game(博弈论+gcd)

    Euclid's Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9033   Accepted: 3695 Des ...

  3. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  4. TYVJ博弈论

    一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140  飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...

  5. Codeforces 549C. The Game Of Parity[博弈论]

    C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...

  6. 【POJ】2234 Matches Game(博弈论)

    http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论 ...

  7. 博弈论入门小结 分类: ACM TYPE 2014-08-31 10:15 73人阅读 评论(0) 收藏

    文章原地址:http://blog.csdn.net/zhangxiang0125/article/details/6174639 博弈论:是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策 ...

  8. poj 3710 Christmas Game 博弈论

    思路:首先用Tarjan算法找出树中的环,环为奇数变为边,为偶数变为点. 之后用博弈论的知识:某点的SG值等于子节点+1后的异或和. 代码如下: #include<iostream> #i ...

  9. hdoj 1404 Digital Deletions(博弈论)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1404 一看就是博弈论的题目,但并没有什么思路,看了题解,才明白 就是求六位数的SG函数,暴力一遍,打表 ...

  10. CodeForces 455B A Lot of Games (博弈论)

    A Lot of Games 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/J Description Andrew, Fedo ...

随机推荐

  1. INNODB

    INNODB,是Mysql5.7的默认存储引擎,是事务安全的,支持ACID,具有提交,回滚和crash-recovery[灾备]能力,以保护用户数据. 优势:一旦Server崩溃,Innodb会自动保 ...

  2. nyoj1007(euler 函数)

    euler(x)公式能计算小于等于x的并且和x互质的数的个数: 我们再看一下如何求小于等于n的和n互质的数的和, 我们用sum(n)表示: 若gcd(x, a)=1,则有gcd(x, x-a)=1: ...

  3. JavaScript基础——处理字符串

    String对象是迄今为止在JavaScript中最常用的对象.在你定义一个字符串数据类型的变量的任何时候,JavaScript就自定为你创建一个String对象.例如: var myStr = &q ...

  4. PHP面向对象——静态属性和静态方法

    静态属性 所谓静态属性,也就是这个属性对于这个类来说是唯一的,不管有多少个对象,只要它引用了一个静态对象,那么这些对象引用出来的值肯定是同一个. 静态变量不能使用->这种箭头符号,而是使用::这 ...

  5. DNS原理

    DNS 是互联网核心协议之一.不管是上网浏览,还是编程开发,都需要了解一点它的知识. 本文详细介绍DNS的原理,以及如何运用工具软件观察它的运作.我的目标是,读完此文后,你就能完全理解DNS. 一.D ...

  6. rpm -qc 来查找安装包的配置文件

    rpm -qc elasticsearch /etc/elasticsearch/elasticsearch.yml /etc/elasticsearch/jvm.options /etc/elast ...

  7. Delphi操作XML简介

    参考:http://www.delphifans.com/InfoView/Article_850.html Delphi 7支持对XML文档的操作,可以通过 TXMLDocument类来实现对XML ...

  8. Pyqt 获取windows系统中已安装软件列表

    开始之前的基础知识 1. 获取软件列表 在Python的标准库中,_winreg可以操作Windows的注册表.获取已经安装的软件列表一般是读去windows的注册表: SOFTWARE\Micros ...

  9. hdu 1556:Color the ball(第二类树状数组 —— 区间更新,点求和)

    Color the ball Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  10. Python 入门简介(一)

    Why Python? 我个人认为去学习一门新的语言其实是不需要理由的,当然如果你硬要我编个理由的话还是很容易的. 容易学 容易用 有人真的在用Python么? 这个问题谁用谁知道. 选择什么开发工具 ...