“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第8章课程讲义下载(PDF)

Summary

  • Algorithm
    Given a general set of $n$ equations and $n$ unknowns $$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots + a_{1n}x_n = c_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots + a_{2n}x_n = c_2 \\ \vdots\\ a_{n1}x_1 + a_{n2}x_2 +\cdots + a_{nn}x_n = c_n \\\end{cases}$$ If the diagonal elements are non-zero, each equation is rewritten for the corresponding unknown, that is, $$\begin{cases}x_1 = \displaystyle{c_1-a_{12}x_2 - a_{13}x_3-\cdots -a_{1n}x_n\over a_{11}}\\ x_2 = \displaystyle{c_2-a_{21}x_1 - a_{23}x_3-\cdots -a_{2n}x_n\over a_{22}}\\ \vdots\\ x_n = \displaystyle{c_n-a_{n1}x_1 - a_{n2}x_2-\cdots -a_{n,n-1}x_{n-1}\over a_{11}}\\ \end{cases}$$ $$\Rightarrow \begin{cases}x_1 = \displaystyle{c_1-\displaystyle\sum_{j=1,j\neq1}^{n}a_{1j}x_j\over a_{11}}\\ x_2 = \displaystyle{c_1-\displaystyle\sum_{j=1,j\neq2}^{n}a_{2j}x_j\over a_{22}}\\ \vdots\\ x_n = \displaystyle{c_n-\displaystyle\sum_{j=1,j\neq n}^{n}a_{nj}x_j\over a_{nn}}\\ \end{cases}$$ Hence for any row $i$, $$x_i = {c_i-\displaystyle\sum_{j=1,j\neq i}^{n}a_{ij}x_j\over a_{ii}}$$ where $i=1$, $2$, $\cdots$, $n$.
  • Iteration
    To find $x_i$, we assume an initial guess for the $x_i$ and then use the rewritten equations to calculate the new estimates. We always use the most recent estimates to calculate the next estimates, $x_i$. At the end of each iteration, we calculate the absolute relative approximate error for each $x_i$ as $$\varepsilon_i = \left|{x_i^{\text{new}} - x_i^{\text{old}}\over x_i^{\text{new}}}\right|$$ where $x_i^{\text{new}}$ is the recently obtained value of $x_i$, and $x_i^{\text{old}}$ is the previous value of $x_i$. When the absolute relative approximate error for each $x_i$ is less than the pre-specified tolerance, the iterations are stopped.
  • Convergent
    The coefficient matrix $[A]$ in $[A][X]=[B]$ must be diagonally dominant, that is, $$\begin{cases}|a_{ii}| \geq \displaystyle\sum_{j=1, j\neq i}^{n}a_{ij}&\text{for all}\ i\\ |a_{ii}| > \displaystyle\sum_{j=1, j\neq i}^{n}a_{ij} & \text{for at least one}\ i\end{cases}$$
  • An example
    Suppose the following system of equations $$\begin{cases}12x_1 + 3x_2 -5x_3 =1\\ x_1 + 5x_2 +3x_3 =28\\ 3x_1 + 7x_2 +13x_3 =76\end{cases}$$ Use $$\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix}1\\ 0\\ 1\end{bmatrix}$$ as the initial guess and conduct two iterations.

    • Diagonally dominant test: $$\begin{cases}|a_{11}|=12 > |a_{12}| + |a_{13}| = 3+5=8\\ |a_{22}|=5 > |a_{21}| + |a_{23}|=1+3=4\\ |a_{33}|=13 > |a_{31}|+|a_{32}| = 3+7=10 \end{cases}$$ Hence the solution should converge using Gauss Seidel method.
    • Rewriting the equations: $$\begin{cases}x_1 = \displaystyle{1-3x_2 +5x_3 \over 12}\\ x_2 = \displaystyle{28-x_1-3x_3\over 5}\\ x_3= \displaystyle{76-3x_1-7x_2\over 13}\end{cases}$$ And the initial value is $$\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix}1\\ 0\\ 1\end{bmatrix}$$
    • Iteration 1: $$\begin{cases}x_1 = \displaystyle{1 - 3\times0 + 5\times1 \over 12} = 0.5\\ x_2 = \displaystyle{28 - 0.5 - 3\times1 \over 5} = 4.9\\ x_3= \displaystyle{76-3\times 0.5-7\times 4.9\over 13}=3.0923\end{cases}$$ Notice that the second and the third equations above, $x_1$ and $x_2$ are updated immediately.
      And the absolute relative approximate error is $$\begin{cases}\varepsilon_1 = \displaystyle{|0.5-1|\over0.5} = 1\\ \varepsilon_2 = \displaystyle{|4.9 - 0|\over 4.9} = 1\\ \varepsilon_3 = \displaystyle{|3.0923 - 1|\over3.0923}=0.67662 \end{cases}$$
    • Iteration 2: $$\begin{cases}x_1 = \displaystyle{1 - 3\times4.9 + 5\times3.0923 \over 12} = 0.14679\\ x_2 = \displaystyle{28 - 0.14679 - 3\times3.0923 \over 5} = 3.7153\\ x_3= \displaystyle{76-3\times 0.14679-7\times 3.7153\over 13} = 3.8118 \end{cases}$$ And the absolute relative approximate error is $$\begin{cases}\varepsilon_1 = \displaystyle{|0.14679-0.5|\over0.14679} = 2.4\\ \varepsilon_2 = \displaystyle{|3.7153 - 4.9|\over 3.7153} = 0.31889\\ \varepsilon_3 = \displaystyle{|3.8118 - 3.0923|\over3.8118}=0.18874 \end{cases}$$
    • Final result:
      After 6 iterations, we have the solution $$\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix}0.99919\\ 3.0001\\ 4.0001 \end{bmatrix}$$ which is very close to the exact solution $$\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix}1\\ 3\\ 4 \end{bmatrix}$$
  • R code:

    Some comments:

    • In the second function PrepA, we use the elementary row operation $R_i + mR_j$ if the diagonal element in $R_i$ equals to zero.
    • In the third function IterSolve, we use $$\varepsilon=\sum\left|x^{\text{new}}-x^{\text{old}}\right|$$ instead of the absolute relative approximate error.
    • x0 is a vector in the main function, which is the initial guess of the system. And eps is the tolerance of the error, which can be smaller or bigger in different cases. The last parameter is maxit is the number of iterations, it does not need to be too much in most cases.
    • Using this code to calculate the previous example:
      A = matrix(c(12, 1, 3, 3, 5, 7, -5, 3, 13), ncol = 3)
      b = matrix(c(1, 28, 76), ncol = 1)
      IterSolve(A, b, c(1, 0, 1))$x
      # Result
      # Converged after 11 iterations
      # [1] 1 3 4

Selected Problems

1. Given the system of equations $$\begin{cases}3x_1 + 7x_2 + 13x_3 =76\\ x_1 +5x_2 + 3x_3 =28\\ 12x_1 +3x_2 -5x_3 =1\end{cases}$$ find the solutions using the Gauss-Seidel method. Use $$\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix}1\\ 0\\ 1\end{bmatrix}$$ as the initial guess.

Solution: Note that the coefficient matrix is not diagonal dominant: $$\begin{cases}|a_{11}| = 3 < |a_{12}| + |a_{13}| = 7+13 =20\\ |a_{33}| = 5 < |a_{31}| + |a_{32}| = 12 + 3 = 15\end{cases}$$ Hence it may diverge. Moreover, we can use our R code to test it:

A = matrix(c(3, 1, 2, 7, 5, 3, 13, 3, -5), ncol = 3)
b = matrix(c(76, 28, 1), ncol = 1)
IterSolve(A, b, c(1, 0, 1))$x
# Result
# [1] -2.496896e+172 1.261843e+171 -9.230477e+171
# Warning message:
# In IterSolve(A, b, c(1, 0, 1)) : Maxit reached

2. Solve the following system equations using Gauss-Seidel method. $$\begin{cases}12x_1 + 7x_2 + 3x_3 = 17\\ 3x_1 + 6x_2 +2x_3 =9\\ 2x_1 + 7x_2 -11x_3 =49\end{cases}$$ Choose the initial guess as $$\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix}1\\ 3\\ 5\end{bmatrix}$$

Solution:

Firstly, we test whether the coefficient matrix is diagonal dominant: $$\begin{cases}|a_{11}| = 12 > |a_{12}| + |a_{13}| =10\\ |a_{22}|=6 > |a_{21}| +|a_{23}|=5\\ |a_{33}| = 11 > |a_{31}| +|a_{32}|= 9\end{cases}$$ which means it is diagonal dominant. Then we will conduct two iterations: $$I_1=\begin{cases}x_1 = \displaystyle{17-7x_2-3x_3\over12} = {17-7\times3 -3\times5\over12} = -1.583333\\ x_2 = \displaystyle{9-3x_1-2x_3\over6} = {9-3\times(-1.583333) -2\times5\over6} = 0.625000\\ x_3=\displaystyle{49-2x_1-7x_2\over -11} = {49-2\times(-1.583333) -7\times 0.625000\over -11} = -4.344697\end{cases}$$ $$I_2=\begin{cases}x_1 = \displaystyle{17-7x_2-3x_3\over12} = \displaystyle{17-7\times0.625000 -3\times(-4.344697)\over12} = 2.138258\\ x_2 = \displaystyle{9-3x_1-2x_3\over6} = {9-3\times2.138258-2\times(-4.344697)\over6} = 1.879104\\ x_3=\displaystyle{49-2x_1-7x_2\over -11} = {49-2\times2.138258 -7\times 1.879104\over -11} = -2.869978\end{cases}$$ Alternatively, we can use R code to solve it directly:

A = matrix(c(12, 3, 2, 7, 6, 7, 3, 2, -11), ncol = 3)
b = matrix(c(17, 9, 49), ncol = 1)
IterSolve(A, b, c(1, 3, 5), eps = 1e-8)$x
# Result
# Converged after 16 iterations
# [1] 1 2 -3

That is, the solution is $$\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix}1\\ 2\\ -3\end{bmatrix}$$

3. Solve the following system equations using Gauss-Seidel method. $$\begin{cases}3x_1 + 6x_2 + 2x_3 =9\\ 12x_1 +7x_2 + 3x_3=17\\ 2x_1 +7x_2 -11x_3=49\end{cases}$$ Choose the initial guess as $$\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 1.1\\ 2.1\\ -2.9 \end{bmatrix}$$

Solution:

We will use the R code to solve it directly:

A = matrix(c(3, 12, 2, 6, 7, 7, 2, 3, -11), ncol = 3)
b = matrix(c(9, 17, 49), ncol = 1)
IterSolve(A, b, c(1, 0, 1), eps = 1e-8)$x
# Result
# Error in IterSolve(A, b, c(1, 3, 5)) : The algorithm diverges

Recall the R function, the result is divergent when the solution in the iterations goes to infinity. Moreover, we can read off its non-convergent according to it is not diagonal dominant since $$\begin{cases}|a_{11}|=3 < |a_{12}|+|a_{13}|=8\\ |a_{22}|=7 < |a_{21}|+|a_{23}|=15\end{cases}$$

A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. 什么是API

    我们从API的功能.分类.设计.实现.用户来看什么是API. API是应用程序组件之间通信的接口 --wiki:Application Programming Interface In compute ...

  2. swift 动手写网络请求封装(仿照了一个大神的)不用导入第三方

    新建一个类Network import UIKit //NSURLSession 的使用过程: // //构造 NSURLRequest //确定 URL //确定 HTTP 方法(GET.POST ...

  3. 使用EasyUI布局时出现混乱瞬间的解决方法

    在所有form代码之前加遮罩层 <div id='PageLoadingTip' style="position: absolute; z-index: 1000; top: 0px; ...

  4. Python中list,tuple,dict,set的区别和用法

    Python语言简洁明了,可以用较少的代码实现同样的功能.这其中Python的四个内置数据类型功不可没,他们即是list, tuple, dict, set.这里对他们进行一个简明的总结. List ...

  5. CodeIgniter框架入门教程——第三课 URL及ajax

    本文转载自:http://www.softeng.cn/?p=74 这节课讲一下CI框架的路由规则,以及如何在CI框架下实现ajax功能. 首先,先介绍CI框架的路由规则,因为CI框架是在PHP的基础 ...

  6. 一些实用的sublime快捷键以及初始设置

    一些常用快捷键 Ctrl + N-------------------新建 Ctrl + F-------------------查找 Ctrl+Shift +k -----------删除一行 Ct ...

  7. Bootstrap系列 -- 3. 段落

    一. 段落基本用法 1. 段落使用<p>标签 2. 段落全局使用font-size=14px字体 ..... 更多请使用Firefox 查看 <p> 华盛顿大学和清华大学共同在 ...

  8. HTML5之CSS3 3D transform 剖析式学习之一

    最近坐地铁发现“亚洲动物基金”在地铁上做了很多公益广告,比较吸引人的是一个月熊的广告.做的很可爱.回去就搜了一下,发现这个网站是HTML5做的,非常炫. 所以想学习一下,方法就是传统的学习办法,模仿. ...

  9. C#访问Azure的资源

    官方参考资料在这里:https://msdn.microsoft.com/en-us/library/azure/dn722415.aspx,本文放一些重点及遇到的坑的解决办法. 身份验证 不是说,我 ...

  10. js表单提交,面向对象

    一.js表单验证之后再提交 1.普通按钮onclick函数调用表单的submit()函数 <input type=button name="submit1" value=&q ...