Time Limit: 50 Sec  Memory Limit: 20 MB
Submit: 2185  Solved: 581

Description

你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作:

命令

参数限制

内容

1 x y A

1<=x,y<=N,A是正整数

将格子x,y里的数字加上A

2 x1 y1 x2 y2

1<=x1<= x2<=N

1<=y1<= y2<=N

输出x1 y1 x2 y2这个矩形内的数字和

3

终止程序

 
 

Input

输入文件第一行一个正整数N。
接下来每行一个操作。每条命令除第一个数字之外,
均要异或上一次输出的答案last_ans,初始时last_ans=0。
 

Output

对于每个2操作,输出一个对应的答案。

Sample Input

4
1 2 3 3
2 1 1 3 3
1 1 1 1
2 1 1 0 7
3

Sample Output

3
5

HINT

数据规模和约定
1<=N<=500000,操作数不超过200000个,内存限制20M,保证答案在int范围内并且解码之后数据仍合法。
样例解释见OJ2683
 
新加数据一组,但未重测----2015.05.24

Source

同Bzoj2683。

嘛,真是简单题啊,才调了两天就过了。

由于强制在线,所以不能像2683那样各种方法乱搞,只能老实写K-Dtree(好像还有块链之类的解法)

K-Dtree定期重构,强行维护数据。常数写不好的话会T飞。

之前把47行的左右边界取错了,时间复杂度直接突破天际。

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#define LL long long
using namespace std;
const int mxn=;
LL read(){
LL x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct node{
int l,r;
int min[],max[];
int d[];
int w;
LL sum;
}t[mxn];
int root=,nowD;
int cmp(const node a,const node b){
return a.d[nowD]<b.d[nowD];
}
int n,cnt;
int lim=;
inline void pushup(int rt,int x){
t[rt].max[]=max(t[rt].max[],t[x].max[]);
t[rt].max[]=max(t[rt].max[],t[x].max[]);
t[rt].min[]=min(t[rt].min[],t[x].min[]);
t[rt].min[]=min(t[rt].min[],t[x].min[]);
return;
}
inline bool in(int x1,int y1,int x2,int y2,int k){
return (x1<=t[k].min[] && t[k].max[]<=x2 &&
y1<=t[k].min[] && t[k].max[]<=y2);
}
inline bool out(int x1,int y1,int x2,int y2,int k){
return (x1>t[k].max[] || x2<t[k].min[] || y1>t[k].max[] || y2<t[k].min[]);
}
int Build(int l,int r,int D){
if(l>r)return ;
nowD=D;int mid=(l+r)>>;
nth_element(t+l,t+mid,t+r+,cmp);///
t[mid].max[]=t[mid].min[]=t[mid].d[];
t[mid].max[]=t[mid].min[]=t[mid].d[];
t[mid].sum=t[mid].w;
//
t[mid].l=Build(l,mid-,D^);
if(t[mid].l)pushup(mid,t[mid].l);
t[mid].r=Build(mid+,r,D^);
if(t[mid].r)pushup(mid,t[mid].r);
//
t[mid].sum=t[mid].w+t[t[mid].l].sum+t[t[mid].r].sum;
return mid;
}
void insert(int &now,int x,int D){
if(!now){now=x;return;}
if(t[x].d[D]==t[now].d[D] && t[x].d[!D]==t[now].d[!D]){
t[now].w+=t[x].w;
t[now].sum+=t[x].w;
--cnt;
return;
}
if(t[x].d[D]<t[now].d[D]){
insert(t[now].l,x,D^);
pushup(now,t[now].l);
}
else{
insert(t[now].r,x,D^);
pushup(now,t[now].r);
}
t[now].sum=t[now].w+t[t[now].l].sum+t[t[now].r].sum;
return;
}
LL query(int rt,int x1,int y1,int x2,int y2){
if(!rt)return ;
LL res=;
if(in(x1,y1,x2,y2,rt)){return t[rt].sum;}
if(out(x1,y1,x2,y2,rt)){return ;}
if(x1<=t[rt].d[] && t[rt].d[]<=x2 &&
y1<=t[rt].d[] && t[rt].d[]<=y2) res+=t[rt].w;
res+=query(t[rt].l,x1,y1,x2,y2)+query(t[rt].r,x1,y1,x2,y2);
return res;
}
int main(){
int i,j,op,x,y,w;
n=read();lim=;
LL lans=;int X1,X2,Y1,Y2;
while(){
op=read();
if(op==)break;
if(op==){
t[++cnt].d[]=read()^lans;t[cnt].d[]=read()^lans;
t[cnt].w=read()^lans;t[cnt].sum=t[cnt].w;
t[cnt].max[]=t[cnt].min[]=t[cnt].d[];
t[cnt].max[]=t[cnt].min[]=t[cnt].d[];
insert(root,cnt,);
if(cnt==lim){
lim+=;
root=Build(,cnt,);
}
}
else{ X1=read()^lans;Y1=read()^lans;X2=read()^lans;Y2=read()^lans;
lans=query(root,X1,Y1,X2,Y2);
printf("%lld\n",lans);
}
}
return ;
}

Bzoj4066 简单题的更多相关文章

  1. [BZOJ2683][BZOJ4066]简单题

    [BZOJ2683][BZOJ4066]简单题 试题描述 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作: 命令 参数限制 内容 1 x y A 1<=x ...

  2. bzoj4066: 简单题 K-Dtree

    bzoj4066: 简单题 链接 bzoj 思路 强制在线.k-dtree. 卡常啊.空间开1e6就T了. 代码 #include <bits/stdc++.h> #define my_m ...

  3. BZOJ4066 简单题(KD-Tree)

    板子题. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> # ...

  4. 【kd-tree】bzoj4066 简单题

    同p1176. #include<cstdio> #include<cmath> #include<algorithm> using namespace std; ...

  5. BZOJ4066:简单题(K-D Tree)

    Description 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作:   命令 参数限制 内容 1 x y A 1<=x,y<=N,A是正整数 ...

  6. 【BZOJ4066】简单题(KD-Tree)

    [BZOJ4066]简单题(KD-Tree) 题面 BZOJ 题解 如果这题不卡空间,并且不强制在线的话 显然可以用\(CDQ\)分治做 但是它又卡空间又强制在线,于是我们欢快的来用\(KD-Tree ...

  7. 【BZOJ4066】简单题 KDtree

    [BZOJ4066]简单题 Description 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作: 命令 参数限制 内容 1 x y A 1<=x,y& ...

  8. [bzoj4066/2683]简单题_KD-Tree

    简单题 bzoj-4066 题目大意:n*n的棋盘,开始为均为0,支持:单点加权值,查询矩阵权值和,强制在线. 注释:$1\le n\le 5\cdot 10^5$,$1\le m \le 2\cdo ...

  9. BZOJ 2683: 简单题

    2683: 简单题 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 913  Solved: 379[Submit][Status][Discuss] ...

随机推荐

  1. 20款最佳用户体验的Sublime Text 2/3主题下载及安装方法

    20款最佳用户体验的Sublime Text 2/3主题下载及安装方法

  2. C#并行编程中的Parallel.Invoke

    一.基础知识 并行编程:并行编程是指软件开发的代码,它能在同一时间执行多个计算任务,提高执行效率和性能一种编程方式,属于多线程编程范畴.所以我们在设计过程中一般会将很多任务划分成若干个互相独立子任务, ...

  3. Spring Security笔记:登录尝试次数限制

    今天在前面一节的基础之上,再增加一点新内容,默认情况下Spring Security不会对登录错误的尝试次数做限制,也就是说允许暴力尝试,这显然不够安全,下面的内容将带着大家一起学习如何限制登录尝试次 ...

  4. .net 动态代理的泛型方法支持问题

    最近一直在做.net平台下的高速服务框架.其中有一个问题一直困扰着我:通过动态代理RealProxy创建的服务代理,不支持泛型方法调用.比如: 接口声明: public interface IMete ...

  5. 【Android测试】【随笔】Android Studio环境搭建

    ◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/5482778.html 随着Android Studio的推 ...

  6. php-fpm 启动参数及重要配置详解

    约定几个目录 /usr/local/php/sbin/php-fpm /usr/local/php/etc/php-fpm.conf /usr/local/php/etc/php.ini 一,php- ...

  7. BASH 命令以及使用方法小结

    最近工作中需要写一个Linux脚本,用到了很多BASH命令,为了防止以后忘记,在这里把它们一一记下来.可能会比较乱,随便看看就好了.如果有说的不对的地方也欢迎大家指正. 1,export VAR=.. ...

  8. jQuery.uploadify-----文件上传带进度条,支持多文件上传的插件

    借鉴别人总结的uploadify:基于jquery的文件上传插件,支持ajax无刷新上传,多个文件同时上传,上传进行进度显示,控制文件上传大小,删除已上传文件. uploadify有两个版本,一个用f ...

  9. ContentProvider详解

    作用:把一个App中的数据库通过Url的形式共享出来,供其他App使用. 首先在App1中创建一个数据库,用SQLiteOpenHelper public class MyOpenHelper ext ...

  10. Python 练习册

    01:将你的 QQ 头像(或者微博头像)右上角加上红色的数字,类似于微信未读信息数量那种提示效果 [图像处理] 类似于图中效果: py 2.7代码: from PIL import Image, Im ...