数据在分片时,典型的是分库分表,就有一个全局ID生成的问题。
单纯的生成全局ID并不是什么难题,但是生成的ID通常要满足分片的一些要求:
   1 不能有单点故障。
   2 以时间为序,或者ID里包含时间。这样一是可以少一个索引,二是冷热数据容易分离。
   3 可以控制ShardingId。比如某一个用户的文章要放在同一个分片内,这样查询效率高,修改也容易。
   4 不要太长,最好64bit。使用long比较好操作,如果是96bit,那就要各种移位相当的不方便,还有可能有些组件不能支持这么大的ID。

一 twitter
twitter在把存储系统从MySQL迁移到Cassandra的过程中由于Cassandra没有顺序ID生成机制,于是自己开发了一套全局唯一ID生成服务:Snowflake。
1 41位的时间序列(精确到毫秒,41位的长度可以使用69年)
2 10位的机器标识(10位的长度最多支持部署1024个节点)
3 12位的计数顺序号(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号) 最高位是符号位,始终为0。
优点:高性能,低延迟;独立的应用;按时间有序。 缺点:需要独立的开发和部署。

原理


java 实现代码

public class IdWorker {

private final long workerId;
private final static long twepoch = 1288834974657L;
private long sequence = 0L;
private final static long workerIdBits = 4L;
public final static long maxWorkerId = -1L ^ -1L << workerIdBits;
private final static long sequenceBits = 10L;
private final static long workerIdShift = sequenceBits;
private final static long timestampLeftShift = sequenceBits + workerIdBits;
public final static long sequenceMask = -1L ^ -1L << sequenceBits;
private long lastTimestamp = -1L;
public IdWorker(final long workerId) {
super();
if (workerId > this.maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format(
"worker Id can't be greater than %d or less than 0",
this.maxWorkerId));
}
this.workerId = workerId;
}
public synchronized long nextId() {
long timestamp = this.timeGen();
if (this.lastTimestamp == timestamp) {
this.sequence = (this.sequence + 1) & this.sequenceMask;
if (this.sequence == 0) {
System.out.println("###########" + sequenceMask);
timestamp = this.tilNextMillis(this.lastTimestamp);
}
} else {
this.sequence = 0;
}
if (timestamp < this.lastTimestamp) {
try {
throw new Exception(
String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds",
this.lastTimestamp - timestamp));
} catch (Exception e) {
e.printStackTrace();
}
}

this.lastTimestamp = timestamp;
long nextId = ((timestamp - twepoch << timestampLeftShift))
| (this.workerId << this.workerIdShift) | (this.sequence);
System.out.println("timestamp:" + timestamp + ",timestampLeftShift:"
+ timestampLeftShift + ",nextId:" + nextId + ",workerId:"
+ workerId + ",sequence:" + sequence);
return nextId;
}

private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
}

private long timeGen() {
return System.currentTimeMillis();
}

public static void main(String[] args){
IdWorker worker2 = new IdWorker(2);
System.out.println(worker2.nextId());
}

}

2 来自Flicker的解决方案
因为MySQL本身支持auto_increment操作,很自然地,我们会想到借助这个特性来实现这个功能。
Flicker在解决全局ID生成方案里就采用了MySQL自增长ID的机制(auto_increment + replace into + MyISAM)。一个生成64位ID方案具体就是这样的:
先创建单独的数据库(eg:ticket),然后创建一个表:

CREATE TABLE Tickets64 (
id bigint(20) unsigned NOT NULL auto_increment,
stub char(1) NOT NULL default '',
PRIMARY KEY (id),
UNIQUE KEY stub (stub)
) ENGINE=MyISAM

  

当我们插入记录后,执行SELECT * from Tickets64,查询结果就是这样的:

+-------------------+------+
| id | stub |
+-------------------+------+
| 72157623227190423 | a |
+-------------------+------+
在我们的应用端需要做下面这两个操作,在一个事务会话里提交:

REPLACE INTO Tickets64 (stub) VALUES ('a');
SELECT LAST_INSERT_ID();

这样我们就能拿到不断增长且不重复的ID了。
到上面为止,我们只是在单台数据库上生成ID,从高可用角度考虑,接下来就要解决单点故障问题:Flicker启用了两台数据库服务器来生成ID,通过区分auto_increment的起始值和步长来生成奇偶数的ID。

TicketServer1:
auto-increment-increment = 2
auto-increment-offset = 1

TicketServer2:
auto-increment-increment = 2
auto-increment-offset = 2

最后,在客户端只需要通过轮询方式取ID就可以了。

优点:充分借助数据库的自增ID机制,提供高可靠性,生成的ID有序。
缺点:占用两个独立的MySQL实例,有些浪费资源,成本较高。

三 UUID

UUID生成的是length=32的16进制格式的字符串,如果回退为byte数组共16个byte元素,即UUID是一个128bit长的数字,
一般用16进制表示。
算法的核心思想是结合机器的网卡、当地时间、一个随即数来生成UUID。
从理论上讲,如果一台机器每秒产生10000000个GUID,则可以保证(概率意义上)3240年不重复
优点:
(1)本地生成ID,不需要进行远程调用,时延低
(2)扩展性好,基本可以认为没有性能上限
缺点:
(1)无法保证趋势递增
(2)uuid过长,往往用字符串表示,作为主键建立索引查询效率低,常见优化方案为“转化为两个uint64整数存储”或者“折半存储”(折半后不能保证唯一性)
四 基于redis的分布式ID生成器
首先,要知道redis的EVAL,EVALSHA命令:
原理

利用redis的lua脚本执行功能,在每个节点上通过lua脚本生成唯一ID。
生成的ID是64位的:

使用41 bit来存放时间,精确到毫秒,可以使用41年。
使用12 bit来存放逻辑分片ID,最大分片ID是4095
使用10 bit来存放自增长ID,意味着每个节点,每毫秒最多可以生成1024个ID
比如GTM时间 Fri Mar 13 10:00:00 CST 2015 ,它的距1970年的毫秒数是 1426212000000,假定分片ID是53,自增长序列是4,则生成的ID是:

5981966696448054276 = 1426212000000 << 22 + 53 << 10 + 41
redis提供了TIME命令,可以取得redis服务器上的秒数和微秒数。因些lua脚本返回的是一个四元组。

second, microSecond, partition, seq
客户端要自己处理,生成最终ID。

((second * 1000 + microSecond / 1000) << (12 + 10)) + (shardId << 10) + seq;
五 MongoDB文档(Document)全局唯一ID

为了考虑分布式,“_id”要求不同的机器都能用全局唯一的同种方法方便的生成它。因此不能使用自增主键(需要多台服务器进行同步,既费时又费力),
因此选用了生成ObjectId对象的方法。

ObjectId使用12字节的存储空间,其生成方式如下:

|0|1|2|3|4|5|6 |7|8|9|10|11|

|时间戳 |机器ID|PID|计数器 |

前四个字节时间戳是从标准纪元开始的时间戳,单位为秒,有如下特性:

1 时间戳与后边5个字节一块,保证秒级别的唯一性;
 2 保证插入顺序大致按时间排序;
 3 隐含了文档创建时间;
 4 时间戳的实际值并不重要,不需要对服务器之间的时间进行同步(因为加上机器ID和进程ID已保证此值唯一,唯一性是ObjectId的最终诉求)。

机器ID是服务器主机标识,通常是机器主机名的散列值。

同一台机器上可以运行多个mongod实例,因此也需要加入进程标识符PID。

前9个字节保证了同一秒钟不同机器不同进程产生的ObjectId的唯一性。后三个字节是一个自动增加的计数器(一个mongod进程需要一个全局的计数器),保证同一秒的ObjectId是唯一的。同一秒钟最多允许每个进程拥有(256^3 = 16777216)个不同的ObjectId。

总结一下:时间戳保证秒级唯一,机器ID保证设计时考虑分布式,避免时钟同步,PID保证同一台服务器运行多个mongod实例时的唯一性,最后的计数器保证同一秒内的唯一性(选用几个字节既要考虑存储的经济性,也要考虑并发性能的上限)。

"_id"既可以在服务器端生成也可以在客户端生成,在客户端生成可以降低服务器端的压力。

高并发分布式系统中生成全局唯一Id汇总的更多相关文章

  1. 如何在高并发分布式系统中生成全局唯一Id

    月整理出来,有兴趣的园友可以关注下我的博客. 分享原由,最近公司用到,并且在找最合适的方案,希望大家多参与讨论和提出新方案.我和我的小伙伴们也讨论了这个主题,我受益匪浅啊…… 博文示例: 1.     ...

  2. 如何在高并发分布式系统中生成全局唯一Id(转)

    http://www.cnblogs.com/heyuquan/p/global-guid-identity-maxId.html 又一个多月没冒泡了,其实最近学了些东西,但是没有安排时间整理成博文, ...

  3. (转)如何在高并发分布式系统中生成全局唯一Id

    又一个多月没冒泡了,其实最近学了些东西,但是没有安排时间整理成博文,后续再奉上.最近还写了一个发邮件的组件以及性能测试请看 <NET开发邮件发送功能的全面教程(含邮件组件源码)> ,还弄了 ...

  4. 高并发分布式系统中生成全局唯一(订单号)Id js返回上一页并刷新、返回上一页、自动刷新页面 父页面操作嵌套iframe子页面的HTML标签元素 .net判断System.Data.DataRow中是否包含某列 .Net使用system.Security.Cryptography.RNGCryptoServiceProvider类与System.Random类生成随机数

    高并发分布式系统中生成全局唯一(订单号)Id   1.GUID数据因毫无规律可言造成索引效率低下,影响了系统的性能,那么通过组合的方式,保留GUID的10个字节,用另6个字节表示GUID生成的时间(D ...

  5. 高并发分布式系统中生成全局唯一(订单号)Id

    1.GUID数据因毫无规律可言造成索引效率低下,影响了系统的性能,那么通过组合的方式,保留GUID的10个字节,用另6个字节表示GUID生成的时间(DateTime),这样我们将时间信息与GUID组合 ...

  6. 分布式系统中生成全局ID的总结与思考

    世间万物,都有自己唯一的标识,比如人,每个人都有自己的指纹(白夜追凶给我科普的,同卵双胞胎DNA一样,但指纹不一样).又如中国人,每个中国人有自己的身份证.对于计算机,很多时候,也需要为每一份数据生成 ...

  7. 高并发分布式环境中获取全局唯一ID[分布式数据库全局唯一主键生成]

    需求说明 在过去单机系统中,生成唯一ID比较简单,可以使用MySQL的自增主键或者Oracle中的sequence, 在现在的大型高并发分布式系统中,以上策略就会有问题了,因为不同的数据库会部署到不同 ...

  8. 常见的生成全局唯一id有哪些?他们各有什么优缺点?

    分布式系统中全局唯一id是我们经常用到的,生成全局id方法由很多,我们选择的时候也比较纠结.每种方式都有各自的使用场景,如果我们熟悉各种方式及优缺点,使用的时候才会更方便.下面我们就一起来看一下常见的 ...

  9. 面试官:如何在分布式场景下生成全局唯一 ID?

    在分布式系统中,有一些场景需要使用全局唯一 ID ,可以和业务场景有关,比如支付流水号,也可以和业务场景无关,比如分库分表后需要有一个全局唯一 ID,或者用作事务版本号.分布式链路追踪等等,好的全局唯 ...

随机推荐

  1. 0525Scrum项目7.0

    一.Spring1回顾: 在这第一个冲刺中,我们主要是完成了主界面的建立,过程虽然有些曲折,大家有时候找的素材.图片都有一些冲突,但是最后我们还是求同存异,努力地做好界面! 在这一个冲刺中,我们虽然算 ...

  2. (BFS)poj2935-Basic Wall Maze

    题目地址 题目与最基本的BFS迷宫的区别就是有一些障碍,可以通过建立三维数组,标记某个地方有障碍不能走.另一个点是输出路径,对此建立结构体时要建立一个pre变量,指向前一个的下标.这样回溯(方法十分经 ...

  3. 【59测试】【树】【dp】

    第一题 A : 这棵树由n个节点以及n - 1条有向边构成,每条边都从父亲节点指向儿子节点,保证除了根节点以外的每个节点都有一个唯一的父亲.树上的节点从1到n标号.该树的一棵子树的定义为某个节点以及从 ...

  4. linux 2.6.21版本的内核合法的MAC地址

    当执行ifconfig eth0 hw ether 11:22:33:44:55:66时,当前内核显示修改成功,但是ping时只无限发送ARP包,PC机也已经给板子回ARP包,但没有任何ICMP包的信 ...

  5. Linq一 基础知识

    1.什么是Linq 他是VS2008(.net framework 3.5)之后一项重大的突破 全程Lnaguage Integrated Query,可以成为数据迭代器. 主要有以下5大块组成: L ...

  6. 删除oracle表中的完全重复数据

    今天数据库除了个问题:项目中的一张表,数据是从另外一个系统中相同的表里弄过来的,但是可能由于昨天同事导数据导致我这张表中的数据出现了完全相同的情况(所有字段),全部是两条,需要删除相同的数据. 做法: ...

  7. 关于if(a<b<c)判断的问题

    由于判断时的执行顺序,不要写成if(a<b<c)这种形式,很有可能得出的结果与我们想像的结果不一致,要写成if(a<b && b<c)!

  8. html之小积累-.-iframe自适应高度

    在做系统框架的时候,常常会用到iframe,当需求是iframe不能出现纵向滚动条,需要根据加载页面的高度,一致延伸,但是iframe的高度自适应问题比较麻烦,当时也是纠结了好久. 方案1:当遇到if ...

  9. GIT 如何删除某个本地的提交

    一.rm后要commit一下才会生效,但这样只是让文件不再出现在今后的版本中,文件副本仍然会在.git/下(这样git才能让误删的文件恢复). 要彻底消灭文件副本,那就要让文件彻底从历史中消失,分两种 ...

  10. LNMP服务器虚拟主机管理lnmp

    安装 系统需求: 需要2 GB硬盘剩余空间 安装步骤: 1.使用putty或类似的SSH工具登陆:登陆后运行:screen -S lnmp如果提示screen命令不存在可以执行:yum install ...