【BZOJ2141】排队(CDQ分治)

题面

题面以及树套树做法见这里

题解

大部分树套树/主席树这类题目都可以用整体二分/CDQ分治来做。

这题考虑一下,在不考虑修改的情况下

贡献是如何产生的?

我们发现是个二位偏序问题(或者说是一个逆序对修改版本)

现在有了一个修改,那么产生贡献的前提额外增加一个:时间。

既然变成了一个三位偏序问题

考虑\(CDQ\)分治

按照时间分治,块内按照\(x\)排序,考虑左侧对右侧的贡献:

维护当前数字(离散后)的一个值域树状数组

因为贡献有当前点作为左端点和右端点的两部分

所以,按照\(x\)正着加入树状数组一次,反着加入树状数组一次。

就求一下在当前时间之前,产生贡献的值就行了。

但是交换操作很不好办。

我们可以把一个交换操作改成两个删除操作和两个插入操作。

这样就可以交换的问题。

一个额外要注意的问题:排序的时候,如果\(x\)相同,一定还要按照修改的值排序,因为小的值同样可以更新大的值,否则会错。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 22222
#define lb(x) (x&(-x))
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Operator{int t,x,y,w,id;}q[MAX<<2],tmp[MAX<<2];
bool operator<(Operator a,Operator b){if(a.x!=b.x)return a.x<b.x;return a.y<b.y;}
int tot,len,S[MAX],a[MAX],n,m,tim;
int c[MAX],ans[MAX];
void add(int x,int w){while(x<=n)c[x]+=w,x+=lb(x);return;}
int getsum(int x){int ret=0;while(x)ret+=c[x],x-=lb(x);return ret;}
void CDQ(int l,int r)
{
if(l==r)return;
int mid=(l+r)>>1;
for(int i=l;i<=r;++i)
if(q[i].t<=mid)add(q[i].y,q[i].w);
else ans[q[i].id]+=q[i].w*(getsum(n)-getsum(q[i].y));
for(int i=l;i<=r;++i)
if(q[i].t<=mid)add(q[i].y,-q[i].w);
for(int i=r;i>=l;--i)
if(q[i].t<=mid)add(q[i].y,q[i].w);
else ans[q[i].id]+=q[i].w*getsum(q[i].y-1);
for(int i=l;i<=r;++i)if(q[i].t<=mid)add(q[i].y,-q[i].w);
int t1=l-1,t2=mid;
for(int i=l;i<=r;++i)
if(q[i].t<=mid)tmp[++t1]=q[i];
else tmp[++t2]=q[i];
for(int i=l;i<=r;++i)q[i]=tmp[i];
CDQ(l,mid);CDQ(mid+1,r);
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=S[i]=read();
sort(&S[1],&S[n+1]);len=unique(&S[1],&S[n+1])-S-1;
for(int i=1;i<=n;++i)a[i]=lower_bound(&S[1],&S[len+1],a[i])-S;
for(int i=1;i<=n;++i)q[++tot]=(Operator){++tim,i,a[i],1,0};
n=len;m=read();
for(int i=1;i<=m;++i)
{
int x=read(),y=read();
q[++tot]=(Operator){++tim,x,a[y],+1,i};
q[++tot]=(Operator){++tim,y,a[x],+1,i};
q[++tot]=(Operator){++tim,x,a[x],-1,i};
q[++tot]=(Operator){++tim,y,a[y],-1,i};
swap(a[x],a[y]);
}
sort(&q[1],&q[tot+1]);
CDQ(1,tim);
printf("%d\n",ans[0]);
for(int i=1;i<=m;++i)printf("%d\n",ans[i]+=ans[i-1]);
return 0;
}

【BZOJ2141】排队(CDQ分治)的更多相关文章

  1. BZOJ 2141: 排队 [CDQ分治]

    题意: 交换序列中两个元素,求逆序对 做分块做到这道题...一看不是三维偏序嘛.... 作为不会树套树的蒟蒻就写CDQ分治吧.... 对时间分治...x排序...y树状数组... 交换拆成两个插入两个 ...

  2. [国家集训队]排队 [cdq分治]

    题面 洛谷 和动态逆序对那道题没有什么区别 把一个交换换成两个删除和两个插入 #include <cstdio> #include <cstdlib> #include < ...

  3. bzoj 2141 : 排队 (cdq分治+bit)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2141 思路: 其实就是求动态逆序对...cdq降维,用树状数组前后求两遍逆序对就好了 切水 ...

  4. BZOJ 2141 排队 (CDQ分治)

    [BZOJ2141]排队 这道题和动态逆序对比较像(BZOJ-3295 没做过的同学建议先做这题),只是删除操作变成了交换.解法:交换操作可以变成删除加插入操作,那么这题就变成了 (时间,位置,值)的 ...

  5. 【教程】简易CDQ分治教程&学习笔记

    前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦!       CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...

  6. BZOJ 2683 简单题 ——CDQ分治

    [题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...

  7. HDU5618 & CDQ分治

    Description: 三维数点 Solution: 第一道cdq分治...感觉还是很显然的虽然题目不能再傻逼了... Code: /*=============================== ...

  8. 初识CDQ分治

    [BZOJ 1176:单点修改,查询子矩阵和]: 1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 200 ...

  9. HDU5322 Hope(DP + CDQ分治 + NTT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can ...

随机推荐

  1. EF中一对多的自反关系设置

            对于一般的目录树,通常就是一对多的自反关系,一般会有一个PID,引用于这个ID,实体类代码类似于下: public partial class Catalog { public Cat ...

  2. Android开源的精美日历控件,热插拔设计的万能自定义UI

    Android开源的精美日历控件,热插拔设计的万能自定义UI UI框架应该逻辑与界面实现分离,该日历控件使用了热插拔的设计 ,简单几步即可实现你需要的UI效果,热插拔的思想是你提供你的实现,我提供我的 ...

  3. tomcat 部署项目到服务器

    参考博客,我选了一种最简单的方法来部署项目. 在tomcat 目录下 的  conf\Catalina\localhost 目录中,新建一个   ' 项目名.xml '   文件,名字用项目名表示, ...

  4. 书写可维护的javascript

    内容介绍 编写可维护的代码很重要,因为大部分开发人员都花费大量时间维护他人代码. 1.什么是可维护的代码? 一般来说可维护的代码都有以下一些特征: 可理解性---------其他人可以接手代码并理解它 ...

  5. 学习笔记之windows 网络编程

    WinSock2.h编程接口笔记在Qtcreater中使用系统默认的库只需要在.pro文件中添加 LIBS += -lws2_32 添加头文件#include <WinSock2.h *初始化套 ...

  6. WebGL中使用window.requestAnimationFrame创建主循环

    今天总结记录一下WebGL中主循环的创建和作用.我先说明什么是主循环,其实单纯的webgl不存在主循环这个概念,这个概念是由渲染引擎引入的,主循环就是利用一个死循环或无截止条件的递归达到定时刷新can ...

  7. 【springmvc+mybatis项目实战】杰信商贸-7.生产厂家新增

    我们要实现新的功能,就是生产厂家的新增先来回顾一下系统架构图我们数据库这边已经建好表了,接下来要做的就是mapper映射 编辑FactoryMapper.xml文件,加入“添加”的逻辑配置代码块 &l ...

  8. OpenLDAP配置TLS加密传输

    原文发表于cu:2016-07-04 参考文档: 基于OpenSSL自建CA与颁发SSL证书:http://seanlook.com/2015/01/18/openssl-self-sign-ca/ ...

  9. [C++基础] tips

    1. 在g++ 中使支持C++11 https://askubuntu.com/questions/773283/how-do-i-use-c11-with-g This you can do by ...

  10. cs231n学习笔记(一)计算机视觉及其发展史

    在网易云课堂上学习计算机视觉经典课程cs231n,觉得有必要做个笔记,因为自己的记性比较差,留待以后查看. 每一堂课都对应一个学习笔记,下面就开始第一堂课. 这堂课主要是回顾了计算机视觉的起源及其后来 ...