Welcoming autumn evening is the best for walking along the boulevard and npeople decided to do so.

The boulevard can be represented as the axis Ox. For every person there are three parameters characterizing the behavior: ti, si, fi — the moment of time when the i-th person starts walking, the start point and the end point of the walk respectively. Each person moves in a straight line along the boulevard from si to fi with a constant speed of either 1 or  - 1 depending on the direction.

When the i-th person appears on the boulevard at the point si she immediately starts walking towards the point fi.

If two or more persons meet at the boulevard (they are at the same point at the same time, no matter which directions they are going) they all greet each other. Like in the normal life, every pair of people greet each other at most once.

You task is to calculate for every person how many people she greets while walking along the boulevard.

Please, pay attention to the fact that i-th person may meet and greet any other person at points si and fi. After a person achieves the destination point fishe moves out of the boulevard and cannot greet anyone else. The same rule applies to the start of the walk: a person cannot greet anyone until she appears on the boulevard.

Input

In the first line there is an integer n (2 ≤ n ≤ 1000) — the number of people who decided to go for a walk.

The following n lines contain parameters for n people. In the i-th line there are three positive integers ti, si, fi (1 ≤ ti, si, fi ≤ 106,  si ≠ fi), where ti, si, fi — the moment of time when the i-th person starts walking, the start point and the end point of the walk respectively.

Output

The single line of the output should contain a sequence of n integers r1, r2, ..., rn separated by a space, where ri denotes the number which the i-th person greets other people while walking along the boulevard.

Examples

Input
3
1 1 10
5 8 2
9 9 10
Output
2 1 1 
Input
3
3 2 4
4 3 4
3 6 4
Output
2 2 2

题意:一个数字n表示有n个人要走上一条路,这条路可以看成一条数轴,每个人用3个数据t,s,f描述,t表示上路的时间,s表示上路的起点,f表示走到的终点(起点可能大于终点,表示往左走),问这n个人每个人会与多少人相遇(走到同一点或互相穿过算相遇);

思路:
每个人的出发时间都不相同,不方便计算,那我们可以预处理一下,将所有点转化为出发时间相同。如果一个人是往左走(起点大于终点),那就将他的出发地点加上时间,向右走就将起点减去时间。这样,就可以将所有的点都看成是从0时刻出发的了。
预处理完之后,用一个for循环的嵌套进行两两遍历,没两个点之间就分两种情况:
1.两个点往相同的方向走:如果要能够相遇,就表示他们预处理完后的起点要相等,因为预处理完后,所有点出发时间都是0,如果起点不同,那两个点同时向一个方向移动,将永远不会相遇。、
而起点相同之后,还要判断两个点的行走区间是否有交集(这里的区间是指未初始化前的区间),有交集才表示会一同走到某一点后相遇。 2.两点的方向相反:若两点的方向相反,我们就可以求出他们相遇的点,就是两点预处理后的起点相加除以2,若求出的相遇的点在两个点行走的区间内,就表示能相遇。
这里的相遇还有一点比较特殊,那就是他们并不一定会走到同一点,比如两个点,一个在2位置,一个在3位置,下一秒,他们就互换了位置,而不会出现在同一点,这也算相遇。如果用整数(2+3)/2,将会得到2,结果可能会出错,所以我们可以用double型,得到一个小数,如果这个小数在两点的交集内,则是可行的。 代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<cmath>
#include<algorithm>
#include<stack>
#include<queue>
#define eps 1e-7
#define ll long long
#define inf 0x3f3f3f3f
#define pi 3.141592653589793238462643383279
using namespace std;
int main()
{
double a[],b[],c[];
int n,visit[];
while(cin>>n)
{
memset(visit,,sizeof(visit));
for(int i=; i<n; ++i)
{
scanf("%lf%lf%lf",&a[i],&b[i],&c[i]);
if(b[i] > c[i]) //预处理使起始时间均为0
b[i] += a[i];
else
b[i] -= a[i];
} for(int i=; i<n-; ++i) //遍历每两个点是否相遇
{
for(int j=i+; j<n; ++j)
{
if(b[i] == b[j] && (b[i] > c[i] && b[j] > c[j] || b[i] < c[i] && b[j] < c[j]))
{ //若起点相同且往同一个方向走
if(b[i] < c[i] && b[j] < c[j]) //同时往右走
{
if( (b[i] + a[i] <= b[j]+a[j] && c[i] >= b[j]+a[j]) || (b[j] + a[j] <= b[i]+a[i] && c[j] >= b[i]+a[i]) )
{ //区间有交集
visit[i]++;
visit[j]++;
}
}
else if(b[i] > c[i] && b[j] > c[j]) //同时往左走
{
if( (b[i] - a[i] >= b[j] - a[j] && c[i] <= b[j] - a[j]) || (b[j] - a[j] >= b[i]-a[i] && c[j] <= b[i]-a[i]) )
{ //区间有交集
visit[i]++;
visit[j]++;
}
}
} else
{
double t = b[i] + b[j];
t /= ; //求出相遇的点
if(b[i] < c[i] && b[j] > c[j])
{
if(t >= b[i] + a[i] && t <= c[i] && t >= c[j] && t <= b[j] - a[j])
{ //交点在两区间内
visit[i]++;
visit[j]++;
}
}
else if(b[i] > c[i] && b[j] < c[j])
{
if(t <= b[i] - a[i] && t >= c[i] && t <= c[j] && t >= b[j] + a[j])
{ //交点在两区间内
visit[i]++;
visit[j]++;
}
}
}
}
}
for(int i=; i<n; ++i)
printf("%d%c",visit[i],i == n- ? '\n':' ');
}
return ;
}
/*
2
1 2 3
2 2 1
*/
 

CodeForces - 589D —(思维题)的更多相关文章

  1. Codeforces 424A (思维题)

    Squats Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  2. Vova and Trophies CodeForces - 1082B(思维题)

    Vova has won nn trophies in different competitions. Each trophy is either golden or silver. The trop ...

  3. CodeForces - 417B (思维题)

    Crash Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

  4. CodeForces - 417A(思维题)

    Elimination Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit  ...

  5. B - Sonya and Exhibition CodeForces - 1004B (思维题)

    B. Sonya and Exhibition time limit per test 1 second memory limit per test 256 megabytes input stand ...

  6. codeforces ~ 1009 B Minimum Ternary String(超级恶心的思维题

    http://codeforces.com/problemset/problem/1009/B B. Minimum Ternary String time limit per test 1 seco ...

  7. 贪心/思维题 Codeforces Round #310 (Div. 2) C. Case of Matryoshkas

    题目传送门 /* 题意:套娃娃,可以套一个单独的娃娃,或者把最后面的娃娃取出,最后使得0-1-2-...-(n-1),问最少要几步 贪心/思维题:娃娃的状态:取出+套上(2),套上(1), 已套上(0 ...

  8. C. Nice Garland Codeforces Round #535 (Div. 3) 思维题

    C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  9. CodeForces - 631C ——(思维题)

    Each month Blake gets the report containing main economic indicators of the company "Blake Tech ...

  10. CodeForces - 1102A(思维题)

    https://vjudge.net/problem/2135388/origin Describe You are given an integer sequence 1,2,-,n. You ha ...

随机推荐

  1. ASP/ASP.NET/VB6文件上传

    1. asp asp 上传文件真的蛋疼,很麻烦,有时候就用第三方组件,或者比较复杂的写法来实现无组件上传. 测试OK的一个叫风声无组件上传类 V2.1 [Fonshen UpLoadClass Ver ...

  2. storyboard貌似不错

    冷静下来看了下,貌似聽简单,蛋疼,忙完才发现,弄的时候咋没发现,靠 push,present等可以全部用下面这个api搞定 - (void)performSegueWithIdentifier:(NS ...

  3. while循环-for循环

    while true: 无限循环语句 break跳出循环,当count=1000的时候结束循环 count是结束当前循环'''count = 0while True: print("coun ...

  4. python3.6 实现AES加密的示例(pyCryptodome)

    当然我也是通过官方推荐,使用下面命令去下载安装的,pip就是好用...    pip install pycryptodome 撸码开始 废话不多说,直接上demo # from Crypto.Has ...

  5. jenkins显示html样式问题的几种解决方案总结

    前言 jenkins上使用HTML Publisher plugin插件生成的html报告样式会丢失,需要设置下才能正常显示. 一.样式丢失 1.官方文档的解释如下,参考地址https://stack ...

  6. docker-ubuntu镜像,nginx镜像

    docker 是将程序与机器隔开,使程序不受环境影响. 安装 sudo apt-get install docker.io ## 好用的一些命令 1.停用全部运行中的容器: docker stop $ ...

  7. QT error LNK2019: 无法解析的外部符号

    一个见到那的错误,困扰了好几天了,今天才解决,记录下. 使用QT Creator建立项目,添加一个QT设计界面widget,命名为TestWidget.有ui,头文件(.h),源码文件(.cpp).在 ...

  8. leetcode204

    public class Solution { public int CountPrimes(int n) { ) { ; } ]; ]; ; ; i < n; i++) { mark[i] = ...

  9. 自己创建js文件

    js文件的创建: /** * Created by Administrator on 2018/7/14. */ (function(arg){ var status = 1; $.extend({ ...

  10. C#格式化数字

    var t1 = Profiler.GetMonoHeapSize()/div; var t2 = Profiler.GetMonoUsedSize() / div; var t3 = Profile ...