Welcoming autumn evening is the best for walking along the boulevard and npeople decided to do so.

The boulevard can be represented as the axis Ox. For every person there are three parameters characterizing the behavior: ti, si, fi — the moment of time when the i-th person starts walking, the start point and the end point of the walk respectively. Each person moves in a straight line along the boulevard from si to fi with a constant speed of either 1 or  - 1 depending on the direction.

When the i-th person appears on the boulevard at the point si she immediately starts walking towards the point fi.

If two or more persons meet at the boulevard (they are at the same point at the same time, no matter which directions they are going) they all greet each other. Like in the normal life, every pair of people greet each other at most once.

You task is to calculate for every person how many people she greets while walking along the boulevard.

Please, pay attention to the fact that i-th person may meet and greet any other person at points si and fi. After a person achieves the destination point fishe moves out of the boulevard and cannot greet anyone else. The same rule applies to the start of the walk: a person cannot greet anyone until she appears on the boulevard.

Input

In the first line there is an integer n (2 ≤ n ≤ 1000) — the number of people who decided to go for a walk.

The following n lines contain parameters for n people. In the i-th line there are three positive integers ti, si, fi (1 ≤ ti, si, fi ≤ 106,  si ≠ fi), where ti, si, fi — the moment of time when the i-th person starts walking, the start point and the end point of the walk respectively.

Output

The single line of the output should contain a sequence of n integers r1, r2, ..., rn separated by a space, where ri denotes the number which the i-th person greets other people while walking along the boulevard.

Examples

Input
3
1 1 10
5 8 2
9 9 10
Output
2 1 1 
Input
3
3 2 4
4 3 4
3 6 4
Output
2 2 2

题意:一个数字n表示有n个人要走上一条路,这条路可以看成一条数轴,每个人用3个数据t,s,f描述,t表示上路的时间,s表示上路的起点,f表示走到的终点(起点可能大于终点,表示往左走),问这n个人每个人会与多少人相遇(走到同一点或互相穿过算相遇);

思路:
每个人的出发时间都不相同,不方便计算,那我们可以预处理一下,将所有点转化为出发时间相同。如果一个人是往左走(起点大于终点),那就将他的出发地点加上时间,向右走就将起点减去时间。这样,就可以将所有的点都看成是从0时刻出发的了。
预处理完之后,用一个for循环的嵌套进行两两遍历,没两个点之间就分两种情况:
1.两个点往相同的方向走:如果要能够相遇,就表示他们预处理完后的起点要相等,因为预处理完后,所有点出发时间都是0,如果起点不同,那两个点同时向一个方向移动,将永远不会相遇。、
而起点相同之后,还要判断两个点的行走区间是否有交集(这里的区间是指未初始化前的区间),有交集才表示会一同走到某一点后相遇。 2.两点的方向相反:若两点的方向相反,我们就可以求出他们相遇的点,就是两点预处理后的起点相加除以2,若求出的相遇的点在两个点行走的区间内,就表示能相遇。
这里的相遇还有一点比较特殊,那就是他们并不一定会走到同一点,比如两个点,一个在2位置,一个在3位置,下一秒,他们就互换了位置,而不会出现在同一点,这也算相遇。如果用整数(2+3)/2,将会得到2,结果可能会出错,所以我们可以用double型,得到一个小数,如果这个小数在两点的交集内,则是可行的。 代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<cmath>
#include<algorithm>
#include<stack>
#include<queue>
#define eps 1e-7
#define ll long long
#define inf 0x3f3f3f3f
#define pi 3.141592653589793238462643383279
using namespace std;
int main()
{
double a[],b[],c[];
int n,visit[];
while(cin>>n)
{
memset(visit,,sizeof(visit));
for(int i=; i<n; ++i)
{
scanf("%lf%lf%lf",&a[i],&b[i],&c[i]);
if(b[i] > c[i]) //预处理使起始时间均为0
b[i] += a[i];
else
b[i] -= a[i];
} for(int i=; i<n-; ++i) //遍历每两个点是否相遇
{
for(int j=i+; j<n; ++j)
{
if(b[i] == b[j] && (b[i] > c[i] && b[j] > c[j] || b[i] < c[i] && b[j] < c[j]))
{ //若起点相同且往同一个方向走
if(b[i] < c[i] && b[j] < c[j]) //同时往右走
{
if( (b[i] + a[i] <= b[j]+a[j] && c[i] >= b[j]+a[j]) || (b[j] + a[j] <= b[i]+a[i] && c[j] >= b[i]+a[i]) )
{ //区间有交集
visit[i]++;
visit[j]++;
}
}
else if(b[i] > c[i] && b[j] > c[j]) //同时往左走
{
if( (b[i] - a[i] >= b[j] - a[j] && c[i] <= b[j] - a[j]) || (b[j] - a[j] >= b[i]-a[i] && c[j] <= b[i]-a[i]) )
{ //区间有交集
visit[i]++;
visit[j]++;
}
}
} else
{
double t = b[i] + b[j];
t /= ; //求出相遇的点
if(b[i] < c[i] && b[j] > c[j])
{
if(t >= b[i] + a[i] && t <= c[i] && t >= c[j] && t <= b[j] - a[j])
{ //交点在两区间内
visit[i]++;
visit[j]++;
}
}
else if(b[i] > c[i] && b[j] < c[j])
{
if(t <= b[i] - a[i] && t >= c[i] && t <= c[j] && t >= b[j] + a[j])
{ //交点在两区间内
visit[i]++;
visit[j]++;
}
}
}
}
}
for(int i=; i<n; ++i)
printf("%d%c",visit[i],i == n- ? '\n':' ');
}
return ;
}
/*
2
1 2 3
2 2 1
*/
 

CodeForces - 589D —(思维题)的更多相关文章

  1. Codeforces 424A (思维题)

    Squats Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  2. Vova and Trophies CodeForces - 1082B(思维题)

    Vova has won nn trophies in different competitions. Each trophy is either golden or silver. The trop ...

  3. CodeForces - 417B (思维题)

    Crash Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

  4. CodeForces - 417A(思维题)

    Elimination Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit  ...

  5. B - Sonya and Exhibition CodeForces - 1004B (思维题)

    B. Sonya and Exhibition time limit per test 1 second memory limit per test 256 megabytes input stand ...

  6. codeforces ~ 1009 B Minimum Ternary String(超级恶心的思维题

    http://codeforces.com/problemset/problem/1009/B B. Minimum Ternary String time limit per test 1 seco ...

  7. 贪心/思维题 Codeforces Round #310 (Div. 2) C. Case of Matryoshkas

    题目传送门 /* 题意:套娃娃,可以套一个单独的娃娃,或者把最后面的娃娃取出,最后使得0-1-2-...-(n-1),问最少要几步 贪心/思维题:娃娃的状态:取出+套上(2),套上(1), 已套上(0 ...

  8. C. Nice Garland Codeforces Round #535 (Div. 3) 思维题

    C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  9. CodeForces - 631C ——(思维题)

    Each month Blake gets the report containing main economic indicators of the company "Blake Tech ...

  10. CodeForces - 1102A(思维题)

    https://vjudge.net/problem/2135388/origin Describe You are given an integer sequence 1,2,-,n. You ha ...

随机推荐

  1. Python笔试题&面试题总结

    黑色加粗的是笔试题,蓝色是面试题 1.什么是GIL 2.Python中的@staticmethod和@classmethod的区别 (**) 3.Python里面如何拷贝一个对象,并解析深浅拷贝 4. ...

  2. 模仿VIMD的模式的简化代码示例

    按numpad0来切换模式,按t显示不同的结果: Numpad0:: tfmode:=!tfmode aaa:=(tfmode=?"AAAA":"BBBB") ...

  3. 腾讯互娱开源分布式开发框架Pebble

    构建游戏世界的Pebble 愿景:出色的游戏服务器端底层框架   现代游戏项目中,为了让更多的玩家能在一起玩,游戏服务器所需要承载的在线玩家数量越来越多.同时为了让游戏更好玩,越来越多复杂的业务逻辑都 ...

  4. 保持一个会话 添加 HTTP Cookie管理器

    在线程组中添加 http cookie manager即可 场景:登录后点击刷新简历

  5. Ubuntu 18.04 gcc降级为4.8.5版本

    1. 下载gcc/g++ 4.8 $ sudo apt-get install -y gcc-4.8.5 $ sudo apt-get install -y g++-4.8.5 2.  链接gcc/g ...

  6. 使用GridFsTemplate在mongodb中存取文件

    spring-data-mongodb之gridfs   mongodb除了能够存储大量的数据外,还内置了一个非常好用的文件系统.基于mongodb集群的优势,GridFS当然也是分布式的,而且备份也 ...

  7. selenium webdriver ——执行javascript代码

    在代码中import org.openqa.selenium.JavascriptExecutor;就可以使用executeScript.executeAsyncScript这两个方法了 execut ...

  8. javascript客户端遍历控件与获取父容器对象

    javascript客户端遍历控件与获取父容器对象示例代码 1,遍历也面中所有的控件function findControlAll()    {        var inputs=document. ...

  9. eclipse里启动tomcat无法通过127.0.0.1访问

    在eclipse里面添加tomcat,再发布一个web项目进去,然后启动tomcat,日志显示tomcat在eclipse里面正常启动,hosts里面配置了ip跟域名的对应关系. 通过域名访问可以正常 ...

  10. A*—java代码

    import java.util.ArrayList; // A*算法寻路 public class AStar2 { public static final int[][] maps = { {0, ...