Welcoming autumn evening is the best for walking along the boulevard and npeople decided to do so.

The boulevard can be represented as the axis Ox. For every person there are three parameters characterizing the behavior: ti, si, fi — the moment of time when the i-th person starts walking, the start point and the end point of the walk respectively. Each person moves in a straight line along the boulevard from si to fi with a constant speed of either 1 or  - 1 depending on the direction.

When the i-th person appears on the boulevard at the point si she immediately starts walking towards the point fi.

If two or more persons meet at the boulevard (they are at the same point at the same time, no matter which directions they are going) they all greet each other. Like in the normal life, every pair of people greet each other at most once.

You task is to calculate for every person how many people she greets while walking along the boulevard.

Please, pay attention to the fact that i-th person may meet and greet any other person at points si and fi. After a person achieves the destination point fishe moves out of the boulevard and cannot greet anyone else. The same rule applies to the start of the walk: a person cannot greet anyone until she appears on the boulevard.

Input

In the first line there is an integer n (2 ≤ n ≤ 1000) — the number of people who decided to go for a walk.

The following n lines contain parameters for n people. In the i-th line there are three positive integers ti, si, fi (1 ≤ ti, si, fi ≤ 106,  si ≠ fi), where ti, si, fi — the moment of time when the i-th person starts walking, the start point and the end point of the walk respectively.

Output

The single line of the output should contain a sequence of n integers r1, r2, ..., rn separated by a space, where ri denotes the number which the i-th person greets other people while walking along the boulevard.

Examples

Input
3
1 1 10
5 8 2
9 9 10
Output
2 1 1 
Input
3
3 2 4
4 3 4
3 6 4
Output
2 2 2

题意:一个数字n表示有n个人要走上一条路,这条路可以看成一条数轴,每个人用3个数据t,s,f描述,t表示上路的时间,s表示上路的起点,f表示走到的终点(起点可能大于终点,表示往左走),问这n个人每个人会与多少人相遇(走到同一点或互相穿过算相遇);

思路:
每个人的出发时间都不相同,不方便计算,那我们可以预处理一下,将所有点转化为出发时间相同。如果一个人是往左走(起点大于终点),那就将他的出发地点加上时间,向右走就将起点减去时间。这样,就可以将所有的点都看成是从0时刻出发的了。
预处理完之后,用一个for循环的嵌套进行两两遍历,没两个点之间就分两种情况:
1.两个点往相同的方向走:如果要能够相遇,就表示他们预处理完后的起点要相等,因为预处理完后,所有点出发时间都是0,如果起点不同,那两个点同时向一个方向移动,将永远不会相遇。、
而起点相同之后,还要判断两个点的行走区间是否有交集(这里的区间是指未初始化前的区间),有交集才表示会一同走到某一点后相遇。 2.两点的方向相反:若两点的方向相反,我们就可以求出他们相遇的点,就是两点预处理后的起点相加除以2,若求出的相遇的点在两个点行走的区间内,就表示能相遇。
这里的相遇还有一点比较特殊,那就是他们并不一定会走到同一点,比如两个点,一个在2位置,一个在3位置,下一秒,他们就互换了位置,而不会出现在同一点,这也算相遇。如果用整数(2+3)/2,将会得到2,结果可能会出错,所以我们可以用double型,得到一个小数,如果这个小数在两点的交集内,则是可行的。 代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<cmath>
#include<algorithm>
#include<stack>
#include<queue>
#define eps 1e-7
#define ll long long
#define inf 0x3f3f3f3f
#define pi 3.141592653589793238462643383279
using namespace std;
int main()
{
double a[],b[],c[];
int n,visit[];
while(cin>>n)
{
memset(visit,,sizeof(visit));
for(int i=; i<n; ++i)
{
scanf("%lf%lf%lf",&a[i],&b[i],&c[i]);
if(b[i] > c[i]) //预处理使起始时间均为0
b[i] += a[i];
else
b[i] -= a[i];
} for(int i=; i<n-; ++i) //遍历每两个点是否相遇
{
for(int j=i+; j<n; ++j)
{
if(b[i] == b[j] && (b[i] > c[i] && b[j] > c[j] || b[i] < c[i] && b[j] < c[j]))
{ //若起点相同且往同一个方向走
if(b[i] < c[i] && b[j] < c[j]) //同时往右走
{
if( (b[i] + a[i] <= b[j]+a[j] && c[i] >= b[j]+a[j]) || (b[j] + a[j] <= b[i]+a[i] && c[j] >= b[i]+a[i]) )
{ //区间有交集
visit[i]++;
visit[j]++;
}
}
else if(b[i] > c[i] && b[j] > c[j]) //同时往左走
{
if( (b[i] - a[i] >= b[j] - a[j] && c[i] <= b[j] - a[j]) || (b[j] - a[j] >= b[i]-a[i] && c[j] <= b[i]-a[i]) )
{ //区间有交集
visit[i]++;
visit[j]++;
}
}
} else
{
double t = b[i] + b[j];
t /= ; //求出相遇的点
if(b[i] < c[i] && b[j] > c[j])
{
if(t >= b[i] + a[i] && t <= c[i] && t >= c[j] && t <= b[j] - a[j])
{ //交点在两区间内
visit[i]++;
visit[j]++;
}
}
else if(b[i] > c[i] && b[j] < c[j])
{
if(t <= b[i] - a[i] && t >= c[i] && t <= c[j] && t >= b[j] + a[j])
{ //交点在两区间内
visit[i]++;
visit[j]++;
}
}
}
}
}
for(int i=; i<n; ++i)
printf("%d%c",visit[i],i == n- ? '\n':' ');
}
return ;
}
/*
2
1 2 3
2 2 1
*/
 

CodeForces - 589D —(思维题)的更多相关文章

  1. Codeforces 424A (思维题)

    Squats Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  2. Vova and Trophies CodeForces - 1082B(思维题)

    Vova has won nn trophies in different competitions. Each trophy is either golden or silver. The trop ...

  3. CodeForces - 417B (思维题)

    Crash Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

  4. CodeForces - 417A(思维题)

    Elimination Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit  ...

  5. B - Sonya and Exhibition CodeForces - 1004B (思维题)

    B. Sonya and Exhibition time limit per test 1 second memory limit per test 256 megabytes input stand ...

  6. codeforces ~ 1009 B Minimum Ternary String(超级恶心的思维题

    http://codeforces.com/problemset/problem/1009/B B. Minimum Ternary String time limit per test 1 seco ...

  7. 贪心/思维题 Codeforces Round #310 (Div. 2) C. Case of Matryoshkas

    题目传送门 /* 题意:套娃娃,可以套一个单独的娃娃,或者把最后面的娃娃取出,最后使得0-1-2-...-(n-1),问最少要几步 贪心/思维题:娃娃的状态:取出+套上(2),套上(1), 已套上(0 ...

  8. C. Nice Garland Codeforces Round #535 (Div. 3) 思维题

    C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  9. CodeForces - 631C ——(思维题)

    Each month Blake gets the report containing main economic indicators of the company "Blake Tech ...

  10. CodeForces - 1102A(思维题)

    https://vjudge.net/problem/2135388/origin Describe You are given an integer sequence 1,2,-,n. You ha ...

随机推荐

  1. Java 经典练习题_Day010

    final 变量能被显式地初始化并且只能初始化一次.被声明为 final 的对象的引用不能指向不同的对象.但是 final 对象里的数据可以被改变.也就是说 final 对象的引用不能改变,但是里面的 ...

  2. 交叉编译OpenCV的Android版本

    交叉编译OpenCV的Android版本 OpenCV作为一个强大的图像处理库,在Android上也有强大的应用. OpenCV官网提供了SDK的下载,可以直接下载使用 OpenCV官网地址:http ...

  3. leetcode 几何题 位运算 面试编程

    [BZOJ][CQOI2014]数三角形 Description给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input ...

  4. 方便好使的java.util.Properties类

    今天偶然碰到这个类,发现jdk中这些平时不大用到的类还挺好玩儿的,用起来也特别实在方便,随便写点记录下. java.util.Properties是对properties这类配置文件的映射.支持key ...

  5. SQL Server数据库partition by 与ROW_NUMBER()函数使用详解[转]

    关于SQL的partition by 字段的一些用法心得 先看例子: if object_id('TESTDB') is not null drop table TESTDB create table ...

  6. 跟我学算法-opencv加载,修改,保存

    #include<opencv2/opencv.hpp> #include<iostream> #include<math.h> using namespace c ...

  7. javascript中所谓的“坑”收录

    坑一: // 反例myname = "global"; // 全局变量function func() { alert(myname); // "undefined&quo ...

  8. 迷你MVVM框架 avalonjs 学习教程3、绑定属性与扫描机制

    在MVVM框架中,你都会看到页面定了许多奇怪的属性,比如knockout的data-☆,angular的ng-☆,avalon的ms-☆,此外还有一些只写文本节点上的双花括号,它们统称为指令.ms-☆ ...

  9. MVC表单提交写法1

    初学MVC,感觉跟以前的aspx页面差别很大,我们就先来看看MVC的表单是怎么提交的吧. 现在我们用一个最简单的例子来看一看MVC是怎么提交表单的(这一个例子中,我们的关注点是如何提交表单,所以不涉及 ...

  10. svg make a face

    1.创建项目 #使用simple模板 vue init webpack-simple vue-svg #安装依赖 cd vue-svg/ npm i #安装d3 npm i d3 --save 2.代 ...