load fisheriris
data = [meas(:,), meas(:,)];
groups = ismember(species,'setosa');
[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true); classes = svmclassify(svmStruct,data(test,:),'showplot',true);
classperf(cp,classes,test);

svmstruct = svmtrain(Training, Group)

Rows of TRAINING correspond to observations; columns correspond to features. Y is a column vector that contains the known class labels for TRAINING.

Y is a grouping variable, i.e., it can be a categorical, numeric, or logical vector; a cell vector of strings; or a character matrix with each row representing a

class label (see help for groupingvariable). Each element of Y specifies the group the corresponding row of TRAINING belongs to.

TRAINING and Y must have the same number of rows. SVMSTRUCT contains information about the trained classifier, including the support vectors, that

is used by SVMCLASSIFY for classification. svmtrain treats NaNs, empty strings or 'undefined' values as missing values and ignores the corresponding

rows in TRAINING and Y.

Group = svmclassify(SVMStruct, Sample)

>> help svmclassify
 svmclassify Classify data using a support vector machine
    GROUP = svmclassify(SVMSTRUCT, TEST) classifies each row in TEST using the support vector machine classifier structure SVMSTRUCT created
    using SVMTRAIN, and returns the predicted class level GROUP. TEST must have the same number of columns as the data used to train the

classifier in SVMTRAIN. GROUP indicates the group to which each row of TEST is assigned.
 
    GROUP = svmclassify(...,'SHOWPLOT',true) plots the test data TEST on the figure created using the SHOWPLOT option in SVMTRAIN.

-----------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------

利用libsvm做多分类问题的经典案例:

[y, x] = libsvmread('iris.scale.txt');
m = svmtrain(y, x, '-t 0');
test_y=[1;2;3];
test_x=[-0.555556 0.25 -0.864407 -0.916667;
0.444444 -0.0833334 0.322034 0.166667 ;
-0.277778 -0.333333 0.322034 0.583333 ];
[predict_label, accuracy, prob_estimates] = svmpredict(test_y, test_x, m);
数据:'iris.scale'可在Libsvm网站上有。共有三类。

iris.scale.txt 文档为:

 :-0.555556 :0.25 :-0.864407 :-0.916667
:-0.666667 :-0.166667 :-0.864407 :-0.916667
:-0.777778 :-0.898305 :-0.916667
:-0.833333 :-0.0833334 :-0.830508 :-0.916667
:-0.611111 :0.333333 :-0.864407 :-0.916667
:-0.388889 :0.583333 :-0.762712 :-0.75
:-0.833333 :0.166667 :-0.864407 :-0.833333
:-0.611111 :0.166667 :-0.830508 :-0.916667
:-0.944444 :-0.25 :-0.864407 :-0.916667
:-0.666667 :-0.0833334 :-0.830508 :-
:-0.388889 :0.416667 :-0.830508 :-0.916667
:-0.722222 :0.166667 :-0.79661 :-0.916667
:-0.722222 :-0.166667 :-0.864407 :-
:- :-0.166667 :-0.966102 :-
:-0.166667 :0.666667 :-0.932203 :-0.916667
:-0.222222 : :-0.830508 :-0.75
:-0.388889 :0.583333 :-0.898305 :-0.75
:-0.555556 :0.25 :-0.864407 :-0.833333
:-0.222222 :0.5 :-0.762712 :-0.833333
:-0.555556 :0.5 :-0.830508 :-0.833333
:-0.388889 :0.166667 :-0.762712 :-0.916667
:-0.555556 :0.416667 :-0.830508 :-0.75
:-0.833333 :0.333333 :- :-0.916667
:-0.555556 :0.0833333 :-0.762712 :-0.666667
:-0.722222 :0.166667 :-0.694915 :-0.916667
:-0.611111 :-0.166667 :-0.79661 :-0.916667
:-0.611111 :0.166667 :-0.79661 :-0.75
:-0.5 :0.25 :-0.830508 :-0.916667
:-0.5 :0.166667 :-0.864407 :-0.916667
:-0.777778 :-0.79661 :-0.916667
:-0.722222 :-0.0833334 :-0.79661 :-0.916667
:-0.388889 :0.166667 :-0.830508 :-0.75
:-0.5 :0.75 :-0.830508 :-
:-0.333333 :0.833333 :-0.864407 :-0.916667
:-0.666667 :-0.0833334 :-0.830508 :-
:-0.611111 :-0.932203 :-0.916667
:-0.333333 :0.25 :-0.898305 :-0.916667
:-0.666667 :-0.0833334 :-0.830508 :-
:-0.944444 :-0.166667 :-0.898305 :-0.916667
:-0.555556 :0.166667 :-0.830508 :-0.916667
:-0.611111 :0.25 :-0.898305 :-0.833333
:-0.888889 :-0.75 :-0.898305 :-0.833333
:-0.944444 :-0.898305 :-0.916667
:-0.611111 :0.25 :-0.79661 :-0.583333
:-0.555556 :0.5 :-0.694915 :-0.75
:-0.722222 :-0.166667 :-0.864407 :-0.833333
:-0.555556 :0.5 :-0.79661 :-0.916667
:-0.833333 :-0.864407 :-0.916667
:-0.444444 :0.416667 :-0.830508 :-0.916667
:-0.611111 :0.0833333 :-0.864407 :-0.916667
:0.5 :0.254237 :0.0833333
:0.166667 :0.186441 :0.166667
:0.444444 :-0.0833334 :0.322034 :0.166667
:-0.333333 :-0.75 :0.0169491 :-4.03573e-08
:0.222222 :-0.333333 :0.220339 :0.166667
:-0.222222 :-0.333333 :0.186441 :-4.03573e-08
:0.111111 :0.0833333 :0.254237 :0.25
:-0.666667 :-0.666667 :-0.220339 :-0.25
:0.277778 :-0.25 :0.220339 :-4.03573e-08
:-0.5 :-0.416667 :-0.0169491 :0.0833333
:-0.611111 :- :-0.152542 :-0.25
:-0.111111 :-0.166667 :0.0847457 :0.166667
:-0.0555556 :-0.833333 :0.0169491 :-0.25
:-1.32455e-07 :-0.25 :0.254237 :0.0833333
:-0.277778 :-0.25 :-0.118644 :-4.03573e-08
:0.333333 :-0.0833334 :0.152542 :0.0833333
:-0.277778 :-0.166667 :0.186441 :0.166667
:-0.166667 :-0.416667 :0.0508474 :-0.25
:0.0555554 :-0.833333 :0.186441 :0.166667
:-0.277778 :-0.583333 :-0.0169491 :-0.166667
:-0.111111 :0.288136 :0.416667
:-1.32455e-07 :-0.333333 :0.0169491 :-4.03573e-08
:0.111111 :-0.583333 :0.322034 :0.166667
:-1.32455e-07 :-0.333333 :0.254237 :-0.0833333
:0.166667 :-0.25 :0.118644 :-4.03573e-08
:0.277778 :-0.166667 :0.152542 :0.0833333
:0.388889 :-0.333333 :0.288136 :0.0833333
:0.333333 :-0.166667 :0.355932 :0.333333
:-0.0555556 :-0.25 :0.186441 :0.166667
:-0.222222 :-0.5 :-0.152542 :-0.25
:-0.333333 :-0.666667 :-0.0508475 :-0.166667
:-0.333333 :-0.666667 :-0.0847458 :-0.25
:-0.166667 :-0.416667 :-0.0169491 :-0.0833333
:-0.0555556 :-0.416667 :0.38983 :0.25
:-0.388889 :-0.166667 :0.186441 :0.166667
:-0.0555556 :0.166667 :0.186441 :0.25
:0.333333 :-0.0833334 :0.254237 :0.166667
:0.111111 :-0.75 :0.152542 :-4.03573e-08
:-0.277778 :-0.166667 :0.0508474 :-4.03573e-08
:-0.333333 :-0.583333 :0.0169491 :-4.03573e-08
:-0.333333 :-0.5 :0.152542 :-0.0833333
:-1.32455e-07 :-0.166667 :0.220339 :0.0833333
:-0.166667 :-0.5 :0.0169491 :-0.0833333
:-0.611111 :-0.75 :-0.220339 :-0.25
:-0.277778 :-0.416667 :0.0847457 :-4.03573e-08
:-0.222222 :-0.166667 :0.0847457 :-0.0833333
:-0.222222 :-0.25 :0.0847457 :-4.03573e-08
:0.0555554 :-0.25 :0.118644 :-4.03573e-08
:-0.555556 :-0.583333 :-0.322034 :-0.166667
:-0.222222 :-0.333333 :0.0508474 :-4.03573e-08
:0.111111 :0.0833333 :0.694915 :
:-0.166667 :-0.416667 :0.38983 :0.5
:0.555555 :-0.166667 :0.661017 :0.666667
:0.111111 :-0.25 :0.559322 :0.416667
:0.222222 :-0.166667 :0.627119 :0.75
:0.833333 :-0.166667 :0.898305 :0.666667
:-0.666667 :-0.583333 :0.186441 :0.333333
:0.666667 :-0.25 :0.79661 :0.416667
:0.333333 :-0.583333 :0.627119 :0.416667
:0.611111 :0.333333 :0.728813 :
:0.222222 :0.38983 :0.583333
:0.166667 :-0.416667 :0.457627 :0.5
:0.388889 :-0.166667 :0.525424 :0.666667
:-0.222222 :-0.583333 :0.355932 :0.583333
:-0.166667 :-0.333333 :0.38983 :0.916667
:0.166667 :0.457627 :0.833333
:0.222222 :-0.166667 :0.525424 :0.416667
:0.888889 :0.5 :0.932203 :0.75
:0.888889 :-0.5 : :0.833333
:-0.0555556 :-0.833333 :0.355932 :0.166667
:0.444444 :0.59322 :0.833333
:-0.277778 :-0.333333 :0.322034 :0.583333
:0.888889 :-0.333333 :0.932203 :0.583333
:0.111111 :-0.416667 :0.322034 :0.416667
:0.333333 :0.0833333 :0.59322 :0.666667
:0.611111 :0.694915 :0.416667
:0.0555554 :-0.333333 :0.288136 :0.416667
:-1.32455e-07 :-0.166667 :0.322034 :0.416667
:0.166667 :-0.333333 :0.559322 :0.666667
:0.611111 :-0.166667 :0.627119 :0.25
:0.722222 :-0.333333 :0.728813 :0.5
: :0.5 :0.830508 :0.583333
:0.166667 :-0.333333 :0.559322 :0.75
:0.111111 :-0.333333 :0.38983 :0.166667
:-1.32455e-07 :-0.5 :0.559322 :0.0833333
:0.888889 :-0.166667 :0.728813 :0.833333
:0.111111 :0.166667 :0.559322 :0.916667
:0.166667 :-0.0833334 :0.525424 :0.416667
:-0.0555556 :-0.166667 :0.288136 :0.416667
:0.444444 :-0.0833334 :0.491525 :0.666667
:0.333333 :-0.0833334 :0.559322 :0.916667
:0.444444 :-0.0833334 :0.38983 :0.833333
:-0.166667 :-0.416667 :0.38983 :0.5
:0.388889 :0.661017 :0.833333
:0.333333 :0.0833333 :0.59322 :
:0.333333 :-0.166667 :0.423729 :0.833333
:0.111111 :-0.583333 :0.355932 :0.5
:0.222222 :-0.166667 :0.423729 :0.583333
:0.0555554 :0.166667 :0.491525 :0.833333
:-0.111111 :-0.166667 :0.38983 :0.416667

SVM实用操作: svmtrain and svmclassify的更多相关文章

  1. 提高开发效率的 Eclipse 实用操作

    工欲善其事,必先利其器.对于程序员来说,Eclipse便是其中的一个“器”.本文会从Eclipse快捷键和实用技巧这两个篇章展开介绍.Eclipse快捷键用熟后,不用鼠标,便可进行编程开发,避免鼠标分 ...

  2. Chrome 开发者工具实用操作

    Chrome 开发者工具实用操作 https://umaar.com/dev-tips/

  3. KiCAD实用操作

    KiCAD实用操作之一:自动编辑线宽 今天偶然间发现的一个比较实用的功能,算是KiCAD的一个优点吧(或许是在AD上面没发现):当整个PCB布完线或者在布线过程中,我们有可能需要对某个线的宽度进行调整 ...

  4. (原)Matlab的svmtrain和svmclassify

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5554551.html 参考网址: http://www.cnblogs.com/zhangchaoya ...

  5. 能够提高开发效率的Eclipse实用操作

    工欲善其事,必先利其器.对于程序员来说,Eclipse便是其中的一个“器”.本文会从Eclipse快捷键和实用技巧这两个篇章展开介绍.Eclipse快捷键用熟后,不用鼠标,便可进行编程开发,避免鼠标分 ...

  6. 能够提高开发效率的 Eclipse 实用操作

    工欲善其事,必先利其器.对于程序员来说,Eclipse便是其中的一个“器”.本文会从Eclipse快捷键和实用技巧这两个篇章展开介绍.Eclipse快捷键用熟后,不用鼠标,便可进行编程开发,避免鼠标分 ...

  7. VS2019 实用操作

    本文列出了在编写程序过程中的几个非常实用的操作方式,通过这些操作方式,可以在一定程度上减少重复操作.提高编码效率.改善编程体验. 列模式操作 列操作是一项很常用且实用的功能,可以一次性修改不同的行. ...

  8. Netcat实用操作

    写久了web倦了,第n次开始尝试网络开发,于是熟悉一下常用工具. 尝试了一下netcat来测试服务器,或者充当客户端都异常好用.于是记录一下常用的一下命令 1. 充当服务器,或者客户端进行访问 通过n ...

  9. Myeclipse学习总结(8)——Eclipse实用操作

    工欲善其事,必先利其器.对于程序员来说,Eclipse便是其中的一个"器".本文会从Eclipse快捷键和实用技巧这两个篇章展开介绍.Eclipse快捷键用熟后,不用鼠标,便可进行 ...

随机推荐

  1. 分享Windows Server 2012 R2的获取正版密钥方法

    然后使用“我有ISIC卡”验证,目前可用号码:S420546009858. 分享Windows Server 2012 R2的获取正版密钥方法. 首先登陆dreamspark注册一个账号https:/ ...

  2. PAT 07-2 A+B和C

    有两个值得注意的地方:1.变长数组(VLA)的使用,没想到PAT上的OJ竟然支持C99,一开始不知道就没用,看了看别人的,既然,还是用吧, 它有一点我不太喜欢,它不能像一般数组那样在声明时通过赋一个0 ...

  3. C/C++整数除法以及保留小数位的问题

    题目描述 Given two postive integers A and B,  please calculate the maximum integer C that C*B≤A, and the ...

  4. Day1 summary

    对比了几篇在hadoop环境中实现关联规则.频繁项集的论文,文章结构都涉及mapreduce模型.传统与改进apriori算法比较.实验结果分析(数据规模-用时or加速比,节点-用时or加速比).有一 ...

  5. selectors实现高并发

    1. 下面的例子,客户端给服务端发送消息,服务端把消息返回 server #!/usr/bin/env python import selectors import socket import tim ...

  6. IOS @2X.png

    [UIImage imageNamed:@"xxx.png"] 或者xib里iPhone4会自动找*@2x.png initWithContentOfFile:pathToImag ...

  7. php大力力 [026节] php开发状态要随时做好整理工作

    php大力力 [026节]  php开发状态要随时做好整理工作: 1.整理了开发目录,以及文件命名: 2.做了各个页面的快捷方式: 3.把浏览器safari的很多没来得及消化的页面链接,写入了我的在线 ...

  8. 13、SQL基础整理(流程控制begin……end)

    流程控制 begin ……end将一个语句块包含起来,中间可以写任何语句 格式: begin--开始 select *from student end--结束 if declare @bianlian ...

  9. UNION语句查询(转载)

    联合查询   在对数据信息进行操作时,有时需要将不同数据表中的数据信息组合在一起,这时需要使用联合查询.联合查询指的是将多表中的行数据组合在一个数据集中进行显示.本节将讲解有关联合查询方面的相关知识. ...

  10. 【转】IoC/DIP其实是一种管理思想

    原文转自:http://blogread.cn/it/article/6487?f=wb 关于IoC的的概念提出来已经很多年了,其被用于一种面象对像的设计.我在这里再简单的回顾一下这个概念.我先谈技术 ...