Spark.ML之PipeLine学习笔记
地址:
#导入向量和模型from pyspark.ml.linalg importVectorsfrom pyspark.ml.classification importLogisticRegression#准备训练数据# Prepare training data from a list of (label, features) tuples.training = spark.createDataFrame([(1.0,Vectors.dense([0.0,1.1,0.1])),(0.0,Vectors.dense([2.0,1.0,-1.0])),(0.0,Vectors.dense([2.0,1.3,1.0])),(1.0,Vectors.dense([0.0,1.2,-0.5]))],["label","features"])#创建回归实例,这个实例是Estimator# Create a LogisticRegression instance. This instance is an Estimator.lr =LogisticRegression(maxIter=10, regParam=0.01)#打印出参数和文档# Print out the parameters, documentation, and any default values.print"LogisticRegression parameters:\n"+ lr.explainParams()+"\n"#使用Ir中的参数训练出Model1# Learn a LogisticRegression model. This uses the parameters stored in lr.model1 = lr.fit(training)# Since model1 is a Model (i.e., a transformer produced by an Estimator),# we can view the parameters it used during fit().# This prints the parameter (name: value) pairs, where names are unique IDs for this# LogisticRegression instance.#查看model1在fit()中使用的参数print"Model 1 was fit using parameters: "print model1.extractParamMap()#修改其中的一个参数# We may alternatively specify parameters using a Python dictionary as a paramMapparamMap ={lr.maxIter:20}#覆盖掉paramMap[lr.maxIter]=30# Specify 1 Param, overwriting the original maxIter.#更新参数对paramMap.update({lr.regParam:0.1, lr.threshold:0.55})# Specify multiple Params.# You can combine paramMaps, which are python dictionaries.#新的参数,合并为两组参数对paramMap2 ={lr.probabilityCol:"myProbability"}# Change output column nameparamMapCombined = paramMap.copy()paramMapCombined.update(paramMap2)#重新得到model2并拿出来参数看看# Now learn a new model using the paramMapCombined parameters.# paramMapCombined overrides all parameters set earlier via lr.set* methods.model2 = lr.fit(training, paramMapCombined)print"Model 2 was fit using parameters: "print model2.extractParamMap()#准备测试的数据# Prepare test datatest = spark.createDataFrame([(1.0,Vectors.dense([-1.0,1.5,1.3])),(0.0,Vectors.dense([3.0,2.0,-0.1])),(1.0,Vectors.dense([0.0,2.2,-1.5]))],["label","features"])# Make predictions on test data using the Transformer.transform() method.# LogisticRegression.transform will only use the 'features' column.# Note that model2.transform() outputs a "myProbability" column instead of the usual# 'probability' column since we renamed the lr.probabilityCol parameter previously.prediction = model2.transform(test)#得到预测的DataFrame打印出预测中的选中列selected = prediction.select("features","label","myProbability","prediction")for row in selected.collect():print row
from pyspark.ml importPipelinefrom pyspark.ml.classification importLogisticRegressionfrom pyspark.ml.feature importHashingTF,Tokenizer#准备测试数据# Prepare training documents from a list of (id, text, label) tuples.training = spark.createDataFrame([(0L,"a b c d e spark",1.0),(1L,"b d",0.0),(2L,"spark f g h",1.0),(3L,"hadoop mapreduce",0.0)],["id","text","label"])#构建机器学习流水线# Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.tokenizer =Tokenizer(inputCol="text", outputCol="words")hashingTF =HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")lr =LogisticRegression(maxIter=10, regParam=0.01)pipeline =Pipeline(stages=[tokenizer, hashingTF, lr])#训练出model# Fit the pipeline to training documents.model = pipeline.fit(training)#测试数据# Prepare test documents, which are unlabeled (id, text) tuples.test = spark.createDataFrame([(4L,"spark i j k"),(5L,"l m n"),(6L,"mapreduce spark"),(7L,"apache hadoop")],["id","text"])#预测,打印出想要的结果# Make predictions on test documents and print columns of interest.prediction = model.transform(test)selected = prediction.select("id","text","prediction")for row in selected.collect():print(row)
Spark.ML之PipeLine学习笔记的更多相关文章
- ML机器学习导论学习笔记
机器学习的定义: 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行为,以 ...
- Spark ML下实现的多分类adaboost+naivebayes算法在文本分类上的应用
1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一 ...
- spark ML pipeline 学习
一.pipeline 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与 ...
- 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...
- spark学习笔记总结-spark入门资料精化
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...
- 使用spark ml pipeline进行机器学习
一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的 ...
- Spark ML Pipeline简介
Spark ML Pipeline基于DataFrame构建了一套High-level API,我们可以使用MLPipeline构建机器学习应用,它能够将一个机器学习应用的多个处理过程组织起来,通过在 ...
- 机器学习框架ML.NET学习笔记【6】TensorFlow图片分类
一.概述 通过之前两篇文章的学习,我们应该已经了解了多元分类的工作原理,图片的分类其流程和之前完全一致,其中最核心的问题就是特征的提取,只要完成特征提取,分类算法就很好处理了,具体流程如下: 之前介绍 ...
- 机器学习框架ML.NET学习笔记【7】人物图片颜值判断
一.概述 这次要解决的问题是输入一张照片,输出人物的颜值数据. 学习样本来源于华南理工大学发布的SCUT-FBP5500数据集,数据集包括 5500 人,每人按颜值魅力打分,分值在 1 到 5 分之间 ...
随机推荐
- eclipse字体颜色设置
修改编码:window-->perference--->General--> Configure.--> Configure.-->workspace修改编辑背景色:wi ...
- zabbix源码安装
Zabbix通过C/S模式采集数据,通过B/S模式在web端展示和配置. 被监控端:主机通过安装agent方式采集数据,网络设备通过SNMP方式采集数据 Server端:通过收集SNMP和agent发 ...
- Android 常用工具类之LogUtil,可以定位到代码行,双击跳转
package cn.utils; import android.util.Log; public class LogUtils { public static boolean isDebug = t ...
- session 加入redis的实现代码方式
session,中文经常翻译为会话,其本来的含义是 指有始有终的一系列动作/消息,比如打电话时从拿起电话拨号到挂断电话这中间的一系列过程可以称之为一个session.有时候我们可以看到这样的话&quo ...
- get/post方式调用http接口
http://www.cnblogs.com/java-pan/tag/HTTP/ http://www.cnblogs.com/snoopylovefiona/p/4730242.html(可做参考 ...
- 以雅酷网为实例从技术上说说dedecms的seo优化要注意哪些?
目前在做雅酷网 ,雅酷卡是雅酷时空公司的产品,我个人感觉用雅酷卡消费还是比较实惠的,而雅酷卡的特色便是雅酷健身卡,很多站长成天的趴电脑上,可以考虑办一张这样的卡,在周末的时候去健身中心活动活动,还是比 ...
- Javascript页面之间参数传递 (前端)
一.来源:tongfang [系统管理员] --[系统管理] 的"SysLeftNavView.ascx.cs 用户插件 usercontrol 左侧菜单导航: <li>< ...
- 将turnserver设定成开机启动
1.创建一个文件,在目录/etc/init/下面 #sudo vim /etc/init/turnserver.conf 2.添加如下内容 description "turn server& ...
- Expanding Rods(二分POJ1905)
Expanding Rods Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 13688 Accepted: 3527 D ...
- 运行html,css,js好的软件
WebStorm: http://pan.baidu.com/s/1eQF81Tw