MySQL之过滤条件
【一】筛选过滤条件
【1】查询语句
-- 查询当前表中的指定字段的数据
select id,name from emp where id > 3;
【2】创建数据表
create database emp_data;
use emp_data;
create table emp(
id int not null unique auto_increment,
name varchar(20) not null,
sex enum("male","female") not null default "male",
age int(3) unsigned not null default 28,
hire_data date not null,
post varchar(50),
post_comment varchar(100),
salary double(15,2),
office int,
depart_id int
);
insert into emp(name, sex, age, hire_data, post, salary, office, depart_id) values
("dream", "male", 78, '20220306', "陌夜痴梦久生情", 730.33, 401, 1), # 以下是教学部
("mengmeng", "female", 25, '20220102', "teacher", 12000.50, 401, 1),
("xiaomeng", "male", 35, '20190607', "teacher", 15000.99, 401, 1),
("xiaona", "female", 29, '20180906', "teacher", 11000.80, 401, 1),
("xiaoqi", "female", 27, '20220806', "teacher", 13000.70, 401, 1),
("suimeng", "male", 33, '20230306', "teacher", 14000.62, 401, 1), # 以下是销售部
("娜娜", "female", 69, '20100307', "sale", 300.13, 402, 2),
("芳芳", "male", 45, '20140518', "sale", 400.45, 402, 2),
("小明", "male", 34, '20160103', "sale", 350.80, 402, 2),
("亚洲", "female", 42, '20170227', "sale", 320.99, 402, 2),
("华华", "female", 55, '20180319', "sale", 380.75, 402, 2),
("田七", "male", 44, '20230808', "sale", 420.33, 402, 2), # 以下是运行部
("大古", "female", 66, '20180509', "operation", 630.33, 403, 3),
("张三", "male", 51, '20191001', "operation", 410.25, 403, 3),
("李四", "male", 47, '20200512', "operation", 330.62, 403, 3),
("王五", "female", 39, '20210203', "operation", 370.98, 403, 3),
("赵六", "female", 36, '20220724', "operation", 390.15, 403, 3);
select * from emp;
select * from emp\G;
【3】筛选条件之where
- 查询
3<=id<=6的数据
mysql> select id,name,age from emp where id >=3 and id <=6;
+----+----------+-----+
| id | name | age |
+----+----------+-----+
| 3 | xiaomeng | 35 |
| 4 | xiaona | 29 |
| 5 | xiaoqi | 27 |
| 6 | suimeng | 33 |
+----+----------+-----+
4 rows in set (0.00 sec)
mysql> select id,name,age from emp where id between 3 and 6;
+----+----------+-----+
| id | name | age |
+----+----------+-----+
| 3 | xiaomeng | 35 |
| 4 | xiaona | 29 |
| 5 | xiaoqi | 27 |
| 6 | suimeng | 33 |
+----+----------+-----+
4 rows in set (0.00 sec)
- 查询 薪资是 12000.50 或者 13000.70 或者730.33 的数据
mysql> select * from emp where salary in (12000.50,13000.70,730.33);
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| id | name | sex | age | hire_data | post | post_comment | salary | office | depart_id |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| 1 | dream | male | 78 | 2022-03-06 | 陌夜痴梦久生情 | NULL | 730.33 | 401 | 1 |
| 2 | mengmeng | female | 25 | 2022-01-02 | teacher | NULL | 12000.50 | 401 | 1 |
| 5 | xiaoqi | female | 27 | 2022-08-06 | teacher | NULL | 13000.70 | 401 | 1 |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
3 rows in set (0.00 sec)
- 查询 员工姓名中包含字母o的姓名和薪资
mysql> select * from emp where name like "%o%";
+----+----------+--------+-----+------------+---------+--------------+----------+--------+-----------+
| id | name | sex | age | hire_data | post | post_comment | salary | office | depart_id |
+----+----------+--------+-----+------------+---------+--------------+----------+--------+-----------+
| 3 | xiaomeng | male | 35 | 2019-06-07 | teacher | NULL | 15000.99 | 401 | 1 |
| 4 | xiaona | female | 29 | 2018-09-06 | teacher | NULL | 11000.80 | 401 | 1 |
| 5 | xiaoqi | female | 27 | 2022-08-06 | teacher | NULL | 13000.70 | 401 | 1 |
+----+----------+--------+-----+------------+---------+--------------+----------+--------+-----------+
3 rows in set (0.00 sec)
- 查询员工姓名是由六个字符组成的姓名和薪资
mysql> select name,salary from emp where name like "______";
+--------+----------+
| name | salary |
+--------+----------+
| xiaona | 11000.80 |
| xiaoqi | 13000.70 |
+--------+----------+
2 rows in set (0.00 sec)
mysql> select name,salary from emp where char_length(name) = 6;
+--------+----------+
| name | salary |
+--------+----------+
| xiaona | 11000.80 |
| xiaoqi | 13000.70 |
+--------+----------+
2 rows in set (0.00 sec)
- 查询岗位描述为空的员工姓名和岗位名
mysql> select * from emp where post_comment is null;
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| id | name | sex | age | hire_data | post | post_comment | salary | office | depart_id |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| 1 | dream | male | 78 | 2022-03-06 | 陌夜痴梦久生情 | NULL | 730.33 | 401 | 1 |
| 2 | mengmeng | female | 25 | 2022-01-02 | teacher | NULL | 12000.50 | 401 | 1 |
| 3 | xiaomeng | male | 35 | 2019-06-07 | teacher | NULL | 15000.99 | 401 | 1 |
| 4 | xiaona | female | 29 | 2018-09-06 | teacher | NULL | 11000.80 | 401 | 1 |
| 5 | xiaoqi | female | 27 | 2022-08-06 | teacher | NULL | 13000.70 | 401 | 1 |
| 6 | suimeng | male | 33 | 2023-03-06 | teacher | NULL | 14000.62 | 401 | 1 |
| 7 | 娜娜 | female | 69 | 2010-03-07 | sale | NULL | 300.13 | 402 | 2 |
| 8 | 芳芳 | male | 45 | 2014-05-18 | sale | NULL | 400.45 | 402 | 2 |
| 9 | 小明 | male | 34 | 2016-01-03 | sale | NULL | 350.80 | 402 | 2 |
| 10 | 亚洲 | female | 42 | 2017-02-27 | sale | NULL | 320.99 | 402 | 2 |
| 11 | 华华 | female | 55 | 2018-03-19 | sale | NULL | 380.75 | 402 | 2 |
| 12 | 田七 | male | 44 | 2023-08-08 | sale | NULL | 420.33 | 402 | 2 |
| 13 | 大古 | female | 66 | 2018-05-09 | operation | NULL | 630.33 | 403 | 3 |
| 14 | 张三 | male | 51 | 2019-10-01 | operation | NULL | 410.25 | 403 | 3 |
| 15 | 李四 | male | 47 | 2020-05-12 | operation | NULL | 330.62 | 403 | 3 |
| 16 | 王五 | female | 39 | 2021-02-03 | operation | NULL | 370.98 | 403 | 3 |
| 17 | 赵六 | female | 36 | 2022-07-24 | operation | NULL | 390.15 | 403 | 3 |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
17 rows in set (0.00 sec)
【二】筛选条件之group by(分组)
mysql> select * from emp group by post;
ERROR 1055 (42000): Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column 'emp_data.emp.id' which is not functionally dependent on columns in GROUP BY clause; this is incompatible with sql_mode=only_full_group_by
模糊查询所有严格模式
关闭这个严格模式
删除了 ONLY_FULL_GROUP_BY
拿到每一个部门的第一行数据
最小的操作单位应该是组,而不是组内的单个数据
这条命令在没有设置严格模式的时候是可以执行的,返回的数据是每组的第一条数据
但是分组不应该以单条数据为参考,而是要以组为操作单位
如果设置了严格模式,上述命令会直接报错
也就是上面的那个错误
mysql> show variables like "%mode";
+--------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+
| Variable_name | Value
|
+--------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+
| block_encryption_mode | aes-128-ecb
|
| gtid_mode | OFF
|
| innodb_autoinc_lock_mode | 1
|
| innodb_strict_mode | ON
|
| offline_mode | OFF
|
| pseudo_slave_mode | OFF
|
| rbr_exec_mode | STRICT
|
| slave_exec_mode | STRICT
|
| sql_mode | ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION |
+--------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+
9 rows in set, 1 warning (0.00 sec)
sql_mode='ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION';
set session sql_mode='STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION';
mysql> select * from emp group by post;
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| id | name | sex | age | hire_data | post | post_comment | salary | office | depart_id |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| 13 | 大古 | female | 66 | 2018-05-09 | operation | NULL | 630.33 | 403 | 3 |
| 7 | 娜娜 | female | 69 | 2010-03-07 | sale | NULL | 300.13 | 402 | 2 |
| 2 | mengmeng | female | 25 | 2022-01-02 | teacher | NULL | 12000.50 | 401 | 1 |
| 1 | dream | male | 78 | 2022-03-06 | 陌夜痴梦久生情 | NULL | 730.33 | 401 | 1 |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
4 rows in set (0.00 sec)
【1】获取每个部门的最高薪资(max)
- 聚合函数:max - 取最大值
- 可以利用as关键字给字段起别名,或者默认不写
- 但是不推荐,如果忽略语义不明确,容易错乱
select post,max(salary) from emp group by post;
-- as别名
select post,min(salary) as "最低薪资" from emp group by post;
【2】获取每个部门的最低薪资(min)
- 聚合函数:min- 取最大值
mysql> select post,min(salary) from emp group by post;
+-----------------------+-------------+
| post | min(salary) |
+-----------------------+-------------+
| operation | 330.62 |
| sale | 300.13 |
| teacher | 11000.80 |
| 陌夜痴梦久生情 | 730.33 |
+-----------------------+-------------+
4 rows in set (0.00 sec)
mysql>
mysql> select post,min(salary) as "最低薪资" from emp group by post;
+-----------------------+--------------+
| post | 最低薪资 |
+-----------------------+--------------+
| operation | 330.62 |
| sale | 300.13 |
| teacher | 11000.80 |
| 陌夜痴梦久生情 | 730.33 |
+-----------------------+--------------+
4 rows in set (0.00 sec)
【3】获取每个部门的平均薪资(avg)
- 聚合函数:avg- 取最大值
mysql> select post,avg(salary) from emp group by post;
+-----------------------+--------------+
| post | avg(salary) |
+-----------------------+--------------+
| operation | 426.466000 |
| sale | 362.241667 |
| teacher | 13000.722000 |
| 陌夜痴梦久生情 | 730.330000 |
+-----------------------+--------------+
4 rows in set (0.00 sec)
mysql> select post,avg(salary) as "平均薪资" from emp group by post;
+-----------------------+--------------+
| post | 平均薪资 |
+-----------------------+--------------+
| operation | 426.466000 |
| sale | 362.241667 |
| teacher | 13000.722000 |
| 陌夜痴梦久生情 | 730.330000 |
+-----------------------+--------------+
4 rows in set (0.00 sec)
【4】获取每个部门的薪资总和(sum)
- 聚合函数:sum- 取最大值
mysql> select post,sum(salary) from emp group by post;
+-----------------------+-------------+
| post | sum(salary) |
+-----------------------+-------------+
| operation | 2132.33 |
| sale | 2173.45 |
| teacher | 65003.61 |
| 陌夜痴梦久生情 | 730.33 |
+-----------------------+-------------+
4 rows in set (0.00 sec)
mysql>
mysql> select post,sum(salary) as "薪资综合" from emp group by post;
+-----------------------+--------------+
| post | 薪资综合 |
+-----------------------+--------------+
| operation | 2132.33 |
| sale | 2173.45 |
| teacher | 65003.61 |
| 陌夜痴梦久生情 | 730.33 |
+-----------------------+--------------+
4 rows in set (0.00 sec)
【5】获取每个部门的人数(count)
- 聚合函数:count- 取最大值
mysql> select post,count(salary) from emp group by post;
+-----------------------+---------------+
| post | count(salary) |
+-----------------------+---------------+
| operation | 5 |
| sale | 6 |
| teacher | 5 |
| 陌夜痴梦久生情 | 1 |
+-----------------------+---------------+
4 rows in set (0.00 sec)
mysql>
mysql> select post,count(id) as "部门总人数" from emp group by post;
+-----------------------+-----------------+
| post | 部门总人数 |
+-----------------------+-----------------+
| operation | 5 |
| sale | 6 |
| teacher | 5 |
| 陌夜痴梦久生情 | 1 |
+-----------------------+-----------------+
4 rows in set (0.00 sec)
【6】查询分组之后的部门名称和每个部门下所有的员工姓名(group_concat)
- 聚合函数:group_concat- 获得分组之后的具体的值
- 不单单支持获取分组之后的其他字段值,还支持拼接操作
mysql> select post,group_concat(name) from emp group by post;
+-----------------------+-------------------------------------------+
| post | group_concat(name) |
+-----------------------+-------------------------------------------+
| operation | 大古,张三,李四,王五,赵六 |
| sale | 娜娜,芳芳,小明,亚洲,华华,田七 |
| teacher | mengmeng,xiaomeng,xiaona,xiaoqi,suimeng |
| 陌夜痴梦久生情 | dream |
+-----------------------+-------------------------------------------+
4 rows in set (0.00 sec)
mysql>
mysql> select post,name from emp group by post;
+-----------------------+----------+
| post | name |
+-----------------------+----------+
| operation | 大古 |
| sale | 娜娜 |
| teacher | mengmeng |
| 陌夜痴梦久生情 | dream |
+-----------------------+----------+
4 rows in set (0.00 sec)
- 拼接数据
mysql> select post,group_concat(name,'_drm') from emp group by post;
+-----------------------+-------------------------------------------------------------------+
| post | group_concat(name,'_drm') |
+-----------------------+-------------------------------------------------------------------+
| operation | 大古_drm,张三_drm,李四_drm,王五_drm,赵六_drm |
| sale | 娜娜_drm,芳芳_drm,小明_drm,亚洲_drm,华华_drm,田七_drm |
| teacher | mengmeng_drm,xiaomeng_drm,xiaona_drm,xiaoqi_drm,suimeng_drm |
| 陌夜痴梦久生情 | dream_drm |
+-----------------------+-------------------------------------------------------------------+
4 rows in set (0.00 sec)
【7】分组注意事项
- where和group by可以同时使用,但是要注意顺序
-- 同时出现要有先后顺序
-- where 先对整体过滤 group by 再对局部过滤
select * from * where * group by *;
【8】统计各部门年龄在 30 岁以上的员工的平均薪资
mysql> select name,age,post,salary from emp where age>30;
+----------+-----+-----------------------+----------+
| name | age | post | salary |
+----------+-----+-----------------------+----------+
| dream | 78 | 陌夜痴梦久生情 | 730.33 |
| xiaomeng | 35 | teacher | 15000.99 |
| suimeng | 33 | teacher | 14000.62 |
| 娜娜 | 69 | sale | 300.13 |
| 芳芳 | 45 | sale | 400.45 |
| 小明 | 34 | sale | 350.80 |
| 亚洲 | 42 | sale | 320.99 |
| 华华 | 55 | sale | 380.75 |
| 田七 | 44 | sale | 420.33 |
| 大古 | 66 | operation | 630.33 |
| 张三 | 51 | operation | 410.25 |
| 李四 | 47 | operation | 330.62 |
| 王五 | 39 | operation | 370.98 |
| 赵六 | 36 | operation | 390.15 |
+----------+-----+-----------------------+----------+
14 rows in set (0.00 sec)
mysql> select group_concat(name,":",age),post,salary from emp where age>30 group by post;
+-------------------------------------------------------------+-----------------------+----------+
| group_concat(name,":",age) | post | salary |
+-------------------------------------------------------------+-----------------------+----------+
| 大古:66,张三:51,李四:47,王五:39,赵六:36 | operation | 630.33 |
| 娜娜:69,芳芳:45,小明:34,亚洲:42,华华:55,田七:44 | sale | 300.13 |
| xiaomeng:35,suimeng:33 | teacher | 15000.99 |
| dream:78 | 陌夜痴梦久生情 | 730.33 |
+-------------------------------------------------------------+-----------------------+----------+
4 rows in set (0.00 sec)
mysql> select post,avg(salary) from emp where age>30 group by post;
+-----------------------+--------------+
| post | avg(salary) |
+-----------------------+--------------+
| operation | 426.466000 |
| sale | 362.241667 |
| teacher | 14500.805000 |
| 陌夜痴梦久生情 | 730.330000 |
+-----------------------+--------------+
4 rows in set (0.00 sec)
【三】筛选条件之having(分组之后筛选)
- having的语法和where是一致的
- 只不过having是在分组之后进行的过滤操作
- 即having是可以直接使用聚合函数的
【1】统计各部门年龄 30 岁以上的员工的工资,并且保留平均薪资大于1w的部门
- 查询数据
mysql> select post,avg(salary) from emp
-> where age > 30
-> group by post
-> having avg(salary) > 10000;
+---------+--------------+
| post | avg(salary) |
+---------+--------------+
| teacher | 14500.805000 |
+---------+--------------+
1 row in set (0.00 sec)
【四】筛选条件之distinct(去重)
- 必须是完全一样的数据才可以去重
- 一定要注意主键的问题
- 在主键存在的情况下是一定不可能去重的
【1】对emp表中的age和id去重
select distinct id,age from emp;
mysql> select distinct id,age from emp;
+----+-----+
| id | age |
+----+-----+
| 1 | 78 |
| 2 | 25 |
| 3 | 35 |
| 4 | 29 |
| 5 | 27 |
| 6 | 33 |
| 7 | 69 |
| 8 | 45 |
| 9 | 34 |
| 10 | 42 |
| 11 | 55 |
| 12 | 44 |
| 13 | 66 |
| 14 | 51 |
| 15 | 47 |
| 16 | 39 |
| 17 | 36 |
+----+-----+
17 rows in set (0.00 sec)
【2】只对emp表中的age去重
mysql> select distinct age from emp;
+-----+
| age |
+-----+
| 78 |
| 25 |
| 35 |
| 29 |
| 27 |
| 33 |
| 69 |
| 45 |
| 34 |
| 42 |
| 55 |
| 44 |
| 66 |
| 51 |
| 47 |
| 39 |
| 36 |
+-----+
17 rows in set (0.00 sec)
【五】筛选条件之order by(排序)
- order by : 默认是升序
- asc 默认可以省略不写 ---> 修改降序
- desc : 降序
【1】将emp表中的数据按照薪资排序(升序)
mysql> select * from emp order by salary;
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| id | name | sex | age | hire_data | post | post_comment | salary | office | depart_id |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| 7 | 娜娜 | female | 69 | 2010-03-07 | sale | NULL | 300.13 | 402 | 2 |
| 10 | 亚洲 | female | 42 | 2017-02-27 | sale | NULL | 320.99 | 402 | 2 |
| 15 | 李四 | male | 47 | 2020-05-12 | operation | NULL | 330.62 | 403 | 3 |
| 9 | 小明 | male | 34 | 2016-01-03 | sale | NULL | 350.80 | 402 | 2 |
| 16 | 王五 | female | 39 | 2021-02-03 | operation | NULL | 370.98 | 403 | 3 |
| 11 | 华华 | female | 55 | 2018-03-19 | sale | NULL | 380.75 | 402 | 2 |
| 17 | 赵六 | female | 36 | 2022-07-24 | operation | NULL | 390.15 | 403 | 3 |
| 8 | 芳芳 | male | 45 | 2014-05-18 | sale | NULL | 400.45 | 402 | 2 |
| 14 | 张三 | male | 51 | 2019-10-01 | operation | NULL | 410.25 | 403 | 3 |
| 12 | 田七 | male | 44 | 2023-08-08 | sale | NULL | 420.33 | 402 | 2 |
| 13 | 大古 | female | 66 | 2018-05-09 | operation | NULL | 630.33 | 403 | 3 |
| 1 | dream | male | 78 | 2022-03-06 | 陌夜痴梦久生情 | NULL | 730.33 | 401 | 1 |
| 4 | xiaona | female | 29 | 2018-09-06 | teacher | NULL | 11000.80 | 401 | 1 |
| 2 | mengmeng | female | 25 | 2022-01-02 | teacher | NULL | 12000.50 | 401 | 1 |
| 5 | xiaoqi | female | 27 | 2022-08-06 | teacher | NULL | 13000.70 | 401 | 1 |
| 6 | suimeng | male | 33 | 2023-03-06 | teacher | NULL | 14000.62 | 401 | 1 |
| 3 | xiaomeng | male | 35 | 2019-06-07 | teacher | NULL | 15000.99 | 401 | 1 |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
17 rows in set (0.00 sec)
【2】将emp表中的数据按照薪资排序(降序)
mysql> select * from emp order by salary desc;
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| id | name | sex | age | hire_data | post | post_comment | salary | office | depart_id |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| 3 | xiaomeng | male | 35 | 2019-06-07 | teacher | NULL | 15000.99 | 401 | 1 |
| 6 | suimeng | male | 33 | 2023-03-06 | teacher | NULL | 14000.62 | 401 | 1 |
| 5 | xiaoqi | female | 27 | 2022-08-06 | teacher | NULL | 13000.70 | 401 | 1 |
| 2 | mengmeng | female | 25 | 2022-01-02 | teacher | NULL | 12000.50 | 401 | 1 |
| 4 | xiaona | female | 29 | 2018-09-06 | teacher | NULL | 11000.80 | 401 | 1 |
| 1 | dream | male | 78 | 2022-03-06 | 陌夜痴梦久生情 | NULL | 730.33 | 401 | 1 |
| 13 | 大古 | female | 66 | 2018-05-09 | operation | NULL | 630.33 | 403 | 3 |
| 12 | 田七 | male | 44 | 2023-08-08 | sale | NULL | 420.33 | 402 | 2 |
| 14 | 张三 | male | 51 | 2019-10-01 | operation | NULL | 410.25 | 403 | 3 |
| 8 | 芳芳 | male | 45 | 2014-05-18 | sale | NULL | 400.45 | 402 | 2 |
| 17 | 赵六 | female | 36 | 2022-07-24 | operation | NULL | 390.15 | 403 | 3 |
| 11 | 华华 | female | 55 | 2018-03-19 | sale | NULL | 380.75 | 402 | 2 |
| 16 | 王五 | female | 39 | 2021-02-03 | operation | NULL | 370.98 | 403 | 3 |
| 9 | 小明 | male | 34 | 2016-01-03 | sale | NULL | 350.80 | 402 | 2 |
| 15 | 李四 | male | 47 | 2020-05-12 | operation | NULL | 330.62 | 403 | 3 |
| 10 | 亚洲 | female | 42 | 2017-02-27 | sale | NULL | 320.99 | 402 | 2 |
| 7 | 娜娜 | female | 69 | 2010-03-07 | sale | NULL | 300.13 | 402 | 2 |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
17 rows in set (0.00 sec)
【3】将emp表中的数据按照薪资(升序)和年龄(降序)排序
- order by 后面可以跟多个参数
- 先按照age降序排
- 如果碰到 age 相同 ,再按照salary 升序排
mysql> select * from emp order by age desc,salary asc;
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| id | name | sex | age | hire_data | post | post_comment | salary | office | depart_id |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| 1 | dream | male | 78 | 2022-03-06 | 陌夜痴梦久生情 | NULL | 730.33 | 401 | 1 |
| 7 | 娜娜 | female | 69 | 2010-03-07 | sale | NULL | 300.13 | 402 | 2 |
| 13 | 大古 | female | 66 | 2018-05-09 | operation | NULL | 630.33 | 403 | 3 |
| 11 | 华华 | female | 55 | 2018-03-19 | sale | NULL | 380.75 | 402 | 2 |
| 14 | 张三 | male | 51 | 2019-10-01 | operation | NULL | 410.25 | 403 | 3 |
| 15 | 李四 | male | 47 | 2020-05-12 | operation | NULL | 330.62 | 403 | 3 |
| 8 | 芳芳 | male | 45 | 2014-05-18 | sale | NULL | 400.45 | 402 | 2 |
| 12 | 田七 | male | 44 | 2023-08-08 | sale | NULL | 420.33 | 402 | 2 |
| 10 | 亚洲 | female | 42 | 2017-02-27 | sale | NULL | 320.99 | 402 | 2 |
| 16 | 王五 | female | 39 | 2021-02-03 | operation | NULL | 370.98 | 403 | 3 |
| 17 | 赵六 | female | 36 | 2022-07-24 | operation | NULL | 390.15 | 403 | 3 |
| 3 | xiaomeng | male | 35 | 2019-06-07 | teacher | NULL | 15000.99 | 401 | 1 |
| 9 | 小明 | male | 34 | 2016-01-03 | sale | NULL | 350.80 | 402 | 2 |
| 6 | suimeng | male | 33 | 2023-03-06 | teacher | NULL | 14000.62 | 401 | 1 |
| 4 | xiaona | female | 29 | 2018-09-06 | teacher | NULL | 11000.80 | 401 | 1 |
| 5 | xiaoqi | female | 27 | 2022-08-06 | teacher | NULL | 13000.70 | 401 | 1 |
| 2 | mengmeng | female | 25 | 2022-01-02 | teacher | NULL | 12000.50 | 401 | 1 |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
17 rows in set (0.00 sec)
【4】混合排序
- 统计各部门年龄在 30 岁以上的员工的工资,并且保留平均薪资大于1000的部门,对平均工资进行排序
mysql> select avg(salary) from emp
-> where age > 30
-> group by post
-> having avg(salary) > 400
-> order by avg(salary) desc
-> ;
+--------------+
| avg(salary) |
+--------------+
| 14500.805000 |
| 730.330000 |
| 426.466000 |
+--------------+
3 rows in set (0.00 sec)
【六】筛选条件之limit(限制展示条数)
- 针对数据太多的情况,我们大都是做分页处理
- limit x,y : 第一个参数是起始位置,第二个是条数
【1】查询数据方式一:单数字限制
select * from emp limit 10;
mysql> select * from emp limit 10;
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| id | name | sex | age | hire_data | post | post_comment | salary | office | depart_id |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| 1 | dream | male | 78 | 2022-03-06 | 陌夜痴梦久生情 | NULL | 730.33 | 401 | 1 |
| 2 | mengmeng | female | 25 | 2022-01-02 | teacher | NULL | 12000.50 | 401 | 1 |
| 3 | xiaomeng | male | 35 | 2019-06-07 | teacher | NULL | 15000.99 | 401 | 1 |
| 4 | xiaona | female | 29 | 2018-09-06 | teacher | NULL | 11000.80 | 401 | 1 |
| 5 | xiaoqi | female | 27 | 2022-08-06 | teacher | NULL | 13000.70 | 401 | 1 |
| 6 | suimeng | male | 33 | 2023-03-06 | teacher | NULL | 14000.62 | 401 | 1 |
| 7 | 娜娜 | female | 69 | 2010-03-07 | sale | NULL | 300.13 | 402 | 2 |
| 8 | 芳芳 | male | 45 | 2014-05-18 | sale | NULL | 400.45 | 402 | 2 |
| 9 | 小明 | male | 34 | 2016-01-03 | sale | NULL | 350.80 | 402 | 2 |
| 10 | 亚洲 | female | 42 | 2017-02-27 | sale | NULL | 320.99 | 402 | 2 |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
10 rows in set (0.00 sec)
【2】查询数据:多限制
select * from emp limit 0,6;
mysql> select * from emp limit 0,6;
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| id | name | sex | age | hire_data | post | post_comment | salary | office | depart_id |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
| 1 | dream | male | 78 | 2022-03-06 | 陌夜痴梦久生情 | NULL | 730.33 | 401 | 1 |
| 2 | mengmeng | female | 25 | 2022-01-02 | teacher | NULL | 12000.50 | 401 | 1 |
| 3 | xiaomeng | male | 35 | 2019-06-07 | teacher | NULL | 15000.99 | 401 | 1 |
| 4 | xiaona | female | 29 | 2018-09-06 | teacher | NULL | 11000.80 | 401 | 1 |
| 5 | xiaoqi | female | 27 | 2022-08-06 | teacher | NULL | 13000.70 | 401 | 1 |
| 6 | suimeng | male | 33 | 2023-03-06 | teacher | NULL | 14000.62 | 401 | 1 |
+----+----------+--------+-----+------------+-----------------------+--------------+----------+--------+-----------+
6 rows in set (0.00 sec)
从 0 后面 取六条
第一个参数是起始位置,第二个是条数
【七】筛选条件之正则
【1】语法
属性名 REGEXP '匹配方式'
- 其中,“属性名”表示需要查询的字段名称;
- “匹配方式”表示以哪种方式来匹配查询。
【2】匹配方式
- “匹配方式”中有很多的模式匹配字符,它们分别表示不同的意思。
- 下表列出了 REGEXP 操作符中常用的匹配方式。
| 选项 | 说明 | 例子 | 匹配值示例 |
|---|---|---|---|
| ^ | 匹配文本的开始字符 | ‘^b’ 匹配以字母 b 开头的字符串 | book、big、banana、bike |
| $ | 匹配文本的结束字符 | ‘st$’ 匹配以 st 结尾的字符串 | test、resist、persist |
| . | 匹配任何单个字符 | ‘b.t’ 匹配任何 b 和 t 之间有一个字符 | bit、bat、but、bite |
| * | 匹配前面的字符 0 次或多次 | ‘f*n’ 匹配字符 n 前面有任意个字符 f | fn、fan、faan、abcn |
| + | 匹配前面的字符 1 次或多次 | ‘ba+’ 匹配以 b 开头,后面至少紧跟一个 a | ba、bay、bare、battle |
| ? | 匹配前面的字符 0 次或1次 | ‘sa?’ 匹配0个或1个a字符 | sa、s |
| 字符串 | 匹配包含指定字符的文本 | ‘fa’ 匹配包含‘fa’的文本 | fan、afa、faad |
| [字符集合] | 匹配字符集合中的任何一个字符 | ‘[xz]’ 匹配 x 或者 z | dizzy、zebra、x-ray、extra |
| [^] | 匹配不在括号中的任何字符 | ‘[^abc]’ 匹配任何不包含 a、b 或 c 的字符串 | desk、fox、f8ke |
| 字符串 | 匹配前面的字符串至少 n 次 | ‘b{2}’ 匹配 2 个或更多的 b | bbb、bbbb、bbbbbbb |
| 字符串 | 匹配前面的字符串至少 n 次, 至多 m 次 | ‘b{2,4}’ 匹配最少 2 个,最多 4 个 b | bbb、bbbb |
【3】演示
- 创建表
DROP TABLE IF EXISTS `person`;
mysql> CREATE TABLE `person` (
-> `name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
-> `age` int(40) NULL DEFAULT NULL,
-> `heigh` int(40) NULL DEFAULT NULL,
-> `sex` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL
-> ) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
Query OK, 0 rows affected (0.04 sec)
插入数据
INSERT INTO `person` VALUES ('Thomas ', 25, 168, '男');
INSERT INTO `person` VALUES ('Tom ', 20, 172, '男');
INSERT INTO `person` VALUES ('Dany', 29, 175, '男');
INSERT INTO `person` VALUES ('Jane', 27, 171, '男');
INSERT INTO `person` VALUES ('Susan', 24, 173, '女');
INSERT INTO `person` VALUES ('Green', 25, 168, '女');
INSERT INTO `person` VALUES ('Henry', 21, 160, '女');
INSERT INTO `person` VALUES ('Lily', 18, 190, '男');
INSERT INTO `person` VALUES ('LiMing', 19, 187, '男');
# 查询 name 字段以j开头的记录
select * from person where name REGEXP '^j';
select * from person where name REGEXP 'y$';
select * from person where name REGEXP 'Th*';
# SQL语句中的正则表达式并不完善,所以功能不全
select * from person where name REGEXP '....';
MySQL之过滤条件的更多相关文章
- MySQL全面瓦解7:查询的过滤条件
概述 在实际的业务场景应用中,我们经常要根据业务条件获取并筛选出我们的目标数据.这个过程我们称之为数据查询的过滤.而过滤过程使用的各种条件(比如日期时间.用户.状态)是我们获取精准数据的必要步骤, 这 ...
- MySQL · 性能优化 · 条件下推到物化表
MySQL · 性能优化 · 条件下推到物化表 http://mysql.taobao.org/monthly/2016/07/08/ 背景 MySQL引入了Materialization(物化)这一 ...
- 在sphinx中应用复杂过滤条件
一.问题的引入 在sphinx应用中,需要对数据进行复杂的条件过滤,刷选出我们需要的数据.这个过程,等同于mysql查询中的where条件. 但sphinx本身的filter并不能支持复杂的逻 ...
- SQL语句中过滤条件放在on和where子句中的区别和联系
摘要: 介绍在多表关联SQL语句中,过滤条件放在on和where子句中的区别--inner join中没区别,外连接就不一样. 综述 蚂蚁金服的一道SQL面试题如下:SQL语句中,过滤条件放在on ...
- .NET深入实战系列--EF到底怎么写过滤条件
本文唯一访问地址:http://www.cnblogs.com/yubaolee/p/DynamicLinq.html 对于系统开发来说,按不同字段进行过滤查询是一种常见的需求.在EF中通常的做法是: ...
- SQL优化 查询语句中,用 inner join 作为过滤条件和用where作为过滤条件的区别
前段时间遇到一个存储过程,参数之一是一个字符串,在存储过程中,把字符串拆分成一个临时表之后存为一个key值的临时表,作为其中一个查询条件, 逻辑实现上有两种处理方式 insert into #t se ...
- 自定义 Azure Table storage 查询过滤条件
本文是在Azure Table storage 基本用法一文的基础上,介绍如何自定义 Azure Table storage 的查询过滤条件.如果您还不太清楚 Azure Table storage ...
- mysql数据过滤
WHERE子句 在我们使用数据库时,通常只会根据特定条件提取表数据的子集.只检索所需数据需要指定搜索条件(search criteria),搜索条件也称为过滤条件(filtercondition). ...
- WireShark系列: 使用WireShark过滤条件抓取特定数据流(zz)
应用抓包过滤,选择Capture | Options,扩展窗口查看到Capture Filter栏.双击选定的接口,如下图所示,弹出Edit Interface Settints窗口. 下图显示了Ed ...
- .NET深入实战系列--EF到底怎么写过滤条件(转)
原文来自:http://www.cnblogs.com/yubaolee/p/DynamicLinq.html 对于系统开发来说,按不同字段进行过滤查询是一种常见的需求.在EF中通常的做法是: /// ...
随机推荐
- 8.6 STARTUPINFO
STARTUPINFO 结构体,可以用来指定新进程的主窗口外观风格.背景颜色.标题等信息,也可以用来实现反调试技术.通常情况下,我们可以将STARTUPINFO结构体中的dwFlags成员设置为STA ...
- LyScript 批量搜索反汇编特征
LyScript 插件实现对特定汇编指令片段的批量搜索功能,用户传入一个汇编指令列表,然后循环搜索该列表内的所有指令特征,如果找到了,则返回该指令的内存地址. 插件地址:https://github. ...
- 从嘉手札<2024-1-29>
补一下以前的几篇日记 2018-4-6 当一个人不在纠结没有什么 而是开始珍视他所拥有的一切的时候 才算得上真正的成熟 个人的意志 不能因受到社会的压力而软弱 也不能受到自然的压力而萎缩 而应当如冬日 ...
- 物色到的 c# 模拟 http post get 请求 做下笔记
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.N ...
- 2000元内最超值游戏处理器!锐龙5 7500F首发评测:轻松超频5.6GHz游戏追平i5-13600K
一.前言:首款不带核显的锐龙7000处理器 以往的桌面锐龙处理器,带核显型号的很少,而到了Zen4时代,此前已上市的锐龙7000系列处理器都集成了核显. 现在,AMD锐龙5 7500F来了,这是AMD ...
- P3509 [POI2010] ZAB-Frog 题解
题目链接:ZAB-Frog 基于一个根据距离第 \(k\) 大的事实: 容易知道,对于红色的点而言,与它相近最近的 \(k\) 个点是连续的.而第 \(k\) 远的要么是最左侧要么是最右侧.而我们注意 ...
- C++对象之谜(封装篇)
这篇博客简要记录下C++对象的相关内容,以便回顾时使用. C++类的定义 我们使用C++定义一个矩形(Rectangle)类,它的基本属性有:长(width),宽(width), 对矩形的基本操作有: ...
- 转载洛谷:23.08.19 普及模拟1 T1
Past 题目描述 所有人,都有一段支离破碎的过去. 你有\(n\)段过去的经历,有时顺利,有时不顺,于是你用一个评价值\(a_i\)来描述你的第\(i\)段经历,它们构成了长度为\(n\)的序列\( ...
- python 不显示科学计数法
pandas方法 import pandas as pd pd.set_option('display.float_format',lambda x : '%.3f' % x) 禁用科学计数法,小数保 ...
- Educational Codeforces Round 136 (Rated for Div. 2) A-E
比赛链接 A 题解 知识点:模拟. 所有点都跑一遍即可. 另外可以不模拟, \(\geq 2*2\) 的情况都可以摆在 \((2,2)\) 这个点,其他摆在 \((1,1)\) . 时间复杂度 \(O ...