题目:

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

分析:

给定两个单词,求word1转换到word2需要的最少步骤,转换的操作有三种,分别是插入一个字符,删除一个字符,替换一个字符。

d(word1, word2)用来求两个单词转换的需要的最小步数,那么如果当两个单词的最后一个字符是相同的,则d(word1, word2) = d(word1', word2')其word1'和word2'是分别去掉最后一个字符的单词。

如果最后两个字符不相同时,我们就需要操作来进行转换,一种是在word1后增加一个字符,是其最后一个字符和word2的最后一个字符相同,一种是删去word1的最后一个字符,一种是将word1的最后一个字符转换成word2的最后一个字符,那么此时最小的步数就是前三个操作的最小值加上1.

可能有同学会问为什么不在word2上进行操作,实际上操作转换这一步是有5个子问题的,但实际上在word1后增加一个字符和word2最后字符相同,相当于在word2后删除字符;删去word1的字符相当于在word2后增加一个字符和word1最后字符相同;而转换操作明显是一样的,所以就合并成为了三个子问题。

当递归执行到其中一个串为空串时,则加上另一个串的长度即可,相当于删去所有的字符。

程序:

C++

class Solution {
public:
int minDistance(string word1, string word2) {
int l1 = word1.length();
int l2 = word2.length();
dp = vector<vector<int>>(l1+1, vector<int>(l2+1, -1));
return minDistance(word1, word2, l1, l2);
}
private:
vector<vector<int>> dp;
int minDistance(string& word1, string& word2, int l1, int l2){
if(l1 == 0)
return l2;
if(l2 == 0)
return l1;
if(dp[l1][l2] >= 0)
return dp[l1][l2];
int res = 0;
if(word1[l1-1] == word2[l2-1]){
res = minDistance(word1, word2, l1-1, l2-1);
dp[l1][l2] = res;
return res;
}
res = min(minDistance(word1, word2, l1-1, l2),
min(minDistance(word1, word2, l1, l2-1),
minDistance(word1, word2, l1-1, l2-1))) + 1;
dp[l1][l2] = res;
return res;
}
};

Java

class Solution {
public int minDistance(String word1, String word2) {
int l1 = word1.length();
int l2 = word2.length();
dp = new int[l1+1][l2+1];
for(int i = 0; i < dp.length; ++i){
for(int j = 0; j < dp[i].length; ++j){
dp[i][j] = -1;
}
}
return minDistance(word1, word2, l1, l2);
}
private int minDistance(String word1, String word2, int l1, int l2){
if(l1 == 0) return l2;
if(l2 == 0) return l1;
if(dp[l1][l2] >= 0)
return dp[l1][l2];
int res = 0;
if(word1.charAt(l1-1) == word2.charAt(l2-1)){
res = minDistance(word1, word2, l1-1, l2-1);
}else{
res = Math.min(minDistance(word1, word2, l1-1, l2),
Math.min(minDistance(word1, word2, l1, l2-1),
minDistance(word1, word2, l1-1, l2-1))) + 1;
}
dp[l1][l2] = res;
return res;
}
private int[][] dp;
}

LeetCode 72. Edit Distance 编辑距离 (C++/Java)的更多相关文章

  1. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  2. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  3. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  4. 【LeetCode】72. Edit Distance 编辑距离(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 记忆化搜索 动态规划 日期 题目地址:http ...

  5. LeetCode - 72. Edit Distance

    最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...

  6. [leetcode]72. Edit Distance 最少编辑步数

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...

  7. 72. Edit Distance(编辑距离 动态规划)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  8. 第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP

    Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三 ...

  9. [leetcode] 72. Edit Distance (hard)

    原题 dp 利用二维数组dp[i][j]存储状态: 从字符串A的0~i位子字符串 到 字符串B的0~j位子字符串,最少需要几步.(每一次删增改都算1步) 所以可得边界状态dp[i][0]=i,dp[0 ...

  10. 【Leetcode】72 Edit Distance

    72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...

随机推荐

  1. 力扣614(MySQL)-二级关注者(中等)

    题目: 在 facebook 中,表 follow 会有 2 个字段: followee, follower ,分别表示被关注者和关注者. 请写一个 sql 查询语句,对每一个关注者,查询关注他的关注 ...

  2. RocketMQ 之 IoT 消息解析:物联网需要什么样的消息技术?

    前言: 从初代开源消息队列崛起,到 PC 互联网.移动互联网爆发式发展,再到如今 IoT.云计算.云原生引领了新的技术趋势,消息中间件的发展已经走过了 30 多个年头. 目前,消息中间件在国内许多行业 ...

  3. What's new in dubbo-go v1.5.6

    简介: dubbogo 社区近期发布了 dubbogo v1.5.6.该版本和 dubbo 2.7.8 对齐,提供了命令行工具,并提供了多种加载配置的方式. 作者 | 铁城  dubbo-go 社区 ...

  4. 如何开发 Node.js Native Add-on?

    简介: 来一起为 Node.js 的 add-on 生态做贡献吧~ 作者 | 吴成忠(昭朗) 这篇文章是由 Chengzhong Wu (@legendecas),Gabriel Schulhof ( ...

  5. [FAQ] swagger-php @OA\JsonContent 与 @MediaType @OA\Schema 的用法

    @OA\JsonContent 是对 @MediaType @OA\Schema 两者的封装,类似于 laravel 中 JsonResponse 对 Response 的封装. @OA\JsonCo ...

  6. 2018-2-13-C#-获得设备usb信息

    title author date CreateTime categories C# 获得设备usb信息 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 17:23 ...

  7. 7.deployment扩容-查看pod使用的CPU-统计ready状态节点数量

    官方文档:https://kubernetes.io/zh-cn/docs/tasks/run-application/scale-stateful-set/题目1: 将名为loadbalancer的 ...

  8. Fastbin attack&&Double free和Unsortbin leak的综合使用

    Fastbin attack&&Double free和Unsortbin leak的综合使用 今天做一个综合题目,包括利用Fastbin attack实现多指针指向一个地址,以及利用 ...

  9. vue使用bus.js在兄弟组件传值

    A组件往B组件传递数据data 1.src下创建文件eventBus.js,内容: import Vue from 'vue' export default new Vue() 2.在A,B组件分别引 ...

  10. Oracle修改字段长度及属性

    首发微信公众号:SQL数据库运维 原文链接:https://mp.weixin.qq.com/s?__biz=MzI1NTQyNzg3MQ==&mid=2247486117&idx=1 ...