题目:

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

分析:

给定两个单词,求word1转换到word2需要的最少步骤,转换的操作有三种,分别是插入一个字符,删除一个字符,替换一个字符。

d(word1, word2)用来求两个单词转换的需要的最小步数,那么如果当两个单词的最后一个字符是相同的,则d(word1, word2) = d(word1', word2')其word1'和word2'是分别去掉最后一个字符的单词。

如果最后两个字符不相同时,我们就需要操作来进行转换,一种是在word1后增加一个字符,是其最后一个字符和word2的最后一个字符相同,一种是删去word1的最后一个字符,一种是将word1的最后一个字符转换成word2的最后一个字符,那么此时最小的步数就是前三个操作的最小值加上1.

可能有同学会问为什么不在word2上进行操作,实际上操作转换这一步是有5个子问题的,但实际上在word1后增加一个字符和word2最后字符相同,相当于在word2后删除字符;删去word1的字符相当于在word2后增加一个字符和word1最后字符相同;而转换操作明显是一样的,所以就合并成为了三个子问题。

当递归执行到其中一个串为空串时,则加上另一个串的长度即可,相当于删去所有的字符。

程序:

C++

class Solution {
public:
int minDistance(string word1, string word2) {
int l1 = word1.length();
int l2 = word2.length();
dp = vector<vector<int>>(l1+1, vector<int>(l2+1, -1));
return minDistance(word1, word2, l1, l2);
}
private:
vector<vector<int>> dp;
int minDistance(string& word1, string& word2, int l1, int l2){
if(l1 == 0)
return l2;
if(l2 == 0)
return l1;
if(dp[l1][l2] >= 0)
return dp[l1][l2];
int res = 0;
if(word1[l1-1] == word2[l2-1]){
res = minDistance(word1, word2, l1-1, l2-1);
dp[l1][l2] = res;
return res;
}
res = min(minDistance(word1, word2, l1-1, l2),
min(minDistance(word1, word2, l1, l2-1),
minDistance(word1, word2, l1-1, l2-1))) + 1;
dp[l1][l2] = res;
return res;
}
};

Java

class Solution {
public int minDistance(String word1, String word2) {
int l1 = word1.length();
int l2 = word2.length();
dp = new int[l1+1][l2+1];
for(int i = 0; i < dp.length; ++i){
for(int j = 0; j < dp[i].length; ++j){
dp[i][j] = -1;
}
}
return minDistance(word1, word2, l1, l2);
}
private int minDistance(String word1, String word2, int l1, int l2){
if(l1 == 0) return l2;
if(l2 == 0) return l1;
if(dp[l1][l2] >= 0)
return dp[l1][l2];
int res = 0;
if(word1.charAt(l1-1) == word2.charAt(l2-1)){
res = minDistance(word1, word2, l1-1, l2-1);
}else{
res = Math.min(minDistance(word1, word2, l1-1, l2),
Math.min(minDistance(word1, word2, l1, l2-1),
minDistance(word1, word2, l1-1, l2-1))) + 1;
}
dp[l1][l2] = res;
return res;
}
private int[][] dp;
}

LeetCode 72. Edit Distance 编辑距离 (C++/Java)的更多相关文章

  1. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  2. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  3. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  4. 【LeetCode】72. Edit Distance 编辑距离(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 记忆化搜索 动态规划 日期 题目地址:http ...

  5. LeetCode - 72. Edit Distance

    最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...

  6. [leetcode]72. Edit Distance 最少编辑步数

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...

  7. 72. Edit Distance(编辑距离 动态规划)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  8. 第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP

    Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三 ...

  9. [leetcode] 72. Edit Distance (hard)

    原题 dp 利用二维数组dp[i][j]存储状态: 从字符串A的0~i位子字符串 到 字符串B的0~j位子字符串,最少需要几步.(每一次删增改都算1步) 所以可得边界状态dp[i][0]=i,dp[0 ...

  10. 【Leetcode】72 Edit Distance

    72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...

随机推荐

  1. Jenkins集成GitLab的正确姿势,实现Git代码提交触发CI/CD

    ❝ jenkins和gitlab是目前DevOps工具链中最常见的,抛开gitlab-ci不谈,gitlab代码提交触发jenkins流水线是最经典的搭配. 这里就介绍下如何配置实现jenkins和g ...

  2. ORA-29277:invalid SMTP operation

    ORA-29277:invalid SMTP operation 邮件发送的时候出现报错 ORA-29277:invalid SMTP operation 官方解释就很简单 但是实际上重试是不行的,几 ...

  3. SLS控制台内嵌操作指南

    简介: SLS控制台内嵌操作指南 一.机制 详见:https://help.aliyun.com/document_detail/74971.html 二.操作 2.1 子账号操作(主账号身份操作) ...

  4. [FE] yarn, npm 切换镜像源

    yarn 设置命令如下,会修改 ~/.yarnrc 内容. $ yarn config set registry https://registry.yarnpkg.com npm 设置命令如下,会修改 ...

  5. 基于EPCLYPS的DDS控制器(二)

    关于ZmodAWGController ZmodAWGController 介绍 双击IP核,进入的第一个界面会有Ch1 Gain Static Configuration的选项修改为 "0 ...

  6. ESP32 + IDF + LED

    一.开发板 ESP32-S3-DevKitC-1 管脚布局 由于这个程序控制比较简单,就不赘述了,直接看程序. 二.程序 #include "freertos/FreeRTOS.h" ...

  7. JOISC2018 题解

    \(\text{By DaiRuiChen007}\) Contest Link A. Construction of Highway Problem Link 题目大意 给 \(n\) 个点,初始每 ...

  8. 使用sshfs-win将linux服务器目录挂载到windows下

    可以直接将服务器上的目录挂载到 Windows 的资源管理器,相当于多了一个磁盘,这样子就可以直接将数据下载到服务器上了,挺方便的. 原理说明 一般情况下,我们可以通过 samba 协议挂载远程服务器 ...

  9. 4G EPS 中的 Bearer

    目录 文章目录 目录 前文列表 承载的内涵 EPS Bearer QoS QoS 的关键参数 APR GBR.MBR AMBR UE 是如何选择 EPS Bearer 的? E-RAB Radio B ...

  10. java学习之旅(day.05)

    switch多选择结构 多选择结构还有一个实现方式就是switch case switch case 语句判断一个变量与一系列值中某个值是否相等,每个值称为一个分支 switch(expression ...