LeetCode 72. Edit Distance 编辑距离 (C++/Java)
题目:
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
分析:
给定两个单词,求word1转换到word2需要的最少步骤,转换的操作有三种,分别是插入一个字符,删除一个字符,替换一个字符。
d(word1, word2)用来求两个单词转换的需要的最小步数,那么如果当两个单词的最后一个字符是相同的,则d(word1, word2) = d(word1', word2')其word1'和word2'是分别去掉最后一个字符的单词。
如果最后两个字符不相同时,我们就需要操作来进行转换,一种是在word1后增加一个字符,是其最后一个字符和word2的最后一个字符相同,一种是删去word1的最后一个字符,一种是将word1的最后一个字符转换成word2的最后一个字符,那么此时最小的步数就是前三个操作的最小值加上1.
可能有同学会问为什么不在word2上进行操作,实际上操作转换这一步是有5个子问题的,但实际上在word1后增加一个字符和word2最后字符相同,相当于在word2后删除字符;删去word1的字符相当于在word2后增加一个字符和word1最后字符相同;而转换操作明显是一样的,所以就合并成为了三个子问题。
当递归执行到其中一个串为空串时,则加上另一个串的长度即可,相当于删去所有的字符。
程序:
C++
class Solution {
public:
int minDistance(string word1, string word2) {
int l1 = word1.length();
int l2 = word2.length();
dp = vector<vector<int>>(l1+1, vector<int>(l2+1, -1));
return minDistance(word1, word2, l1, l2);
}
private:
vector<vector<int>> dp;
int minDistance(string& word1, string& word2, int l1, int l2){
if(l1 == 0)
return l2;
if(l2 == 0)
return l1;
if(dp[l1][l2] >= 0)
return dp[l1][l2];
int res = 0;
if(word1[l1-1] == word2[l2-1]){
res = minDistance(word1, word2, l1-1, l2-1);
dp[l1][l2] = res;
return res;
}
res = min(minDistance(word1, word2, l1-1, l2),
min(minDistance(word1, word2, l1, l2-1),
minDistance(word1, word2, l1-1, l2-1))) + 1;
dp[l1][l2] = res;
return res;
}
};
Java
class Solution {
public int minDistance(String word1, String word2) {
int l1 = word1.length();
int l2 = word2.length();
dp = new int[l1+1][l2+1];
for(int i = 0; i < dp.length; ++i){
for(int j = 0; j < dp[i].length; ++j){
dp[i][j] = -1;
}
}
return minDistance(word1, word2, l1, l2);
}
private int minDistance(String word1, String word2, int l1, int l2){
if(l1 == 0) return l2;
if(l2 == 0) return l1;
if(dp[l1][l2] >= 0)
return dp[l1][l2];
int res = 0;
if(word1.charAt(l1-1) == word2.charAt(l2-1)){
res = minDistance(word1, word2, l1-1, l2-1);
}else{
res = Math.min(minDistance(word1, word2, l1-1, l2),
Math.min(minDistance(word1, word2, l1, l2-1),
minDistance(word1, word2, l1-1, l2-1))) + 1;
}
dp[l1][l2] = res;
return res;
}
private int[][] dp;
}
LeetCode 72. Edit Distance 编辑距离 (C++/Java)的更多相关文章
- [LeetCode] 72. Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- leetCode 72.Edit Distance (编辑距离) 解题思路和方法
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- [LeetCode] 72. Edit Distance(最短编辑距离)
传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...
- 【LeetCode】72. Edit Distance 编辑距离(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 记忆化搜索 动态规划 日期 题目地址:http ...
- LeetCode - 72. Edit Distance
最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...
- [leetcode]72. Edit Distance 最少编辑步数
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- 72. Edit Distance(编辑距离 动态规划)
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- 第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP
Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三 ...
- [leetcode] 72. Edit Distance (hard)
原题 dp 利用二维数组dp[i][j]存储状态: 从字符串A的0~i位子字符串 到 字符串B的0~j位子字符串,最少需要几步.(每一次删增改都算1步) 所以可得边界状态dp[i][0]=i,dp[0 ...
- 【Leetcode】72 Edit Distance
72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...
随机推荐
- 07cj031,07CJ03-1图集免费下载
简介 07CJ03-1轻钢龙骨石膏板隔墙.吊顶图集是中国建筑标准设计研究院组织编写的一部针对轻钢龙骨.石膏板材料用于非承重隔墙.室内吊顶装修的装修.建造参考资料,为用户提供专业的建造参考 下载 有需要 ...
- Databricks 企业版 Spark&Delta Lake 引擎助力 Lakehouse 高效访问
简介:本文介绍了Databricks企业版Delta Lake的性能优势,借助这些特性能够大幅提升Spark SQL的查询性能,加快Delta表的查询速度. 作者: 李锦桂(锦犀) 阿里云开源大数据 ...
- [FAQ] Vue 如何控制标签元素的某个属性的显示 ?
这需要借助 v-model 的用法,动态决定元素的展示. <q-btn :disable="2 > 1">按钮</q-btn> 展示结果是:<q ...
- [MySQL] 导入数据库和表的两种方式
如果是导入 mysqldump 导出的 sql 文件,使用 mysql 命令再导入就可以了. 下面是另一种可选方式: use xxdb source /var/lib/mysql/xxtable.sq ...
- dotnet 读 WPF 源代码笔记 WPF 是如何做到一套代码兼容多个 .NET Framework 版本
在 .NET Framework 时代里面,有一组有趣的概念,那就是 SDK 和 Runtime 这两个概念.开发模式十分有趣,在开发者设备上,可以指定 .NET Framework 的 SDK 版本 ...
- dotnet Microsoft.Recognizers.Text 超强大的自然语言关键词提取库
本文和大家介绍一个使用超级简单,但是功能特别强大的自然语言关键词提取库,可以根据输入的自然语言提取出里面的信息.例如我在一句话里面说了哪些数值变量或者说了手机号码等 先看看下图的一个效果,下图是尝试识 ...
- STM32的半主机与MicroLIB机制
一.半主机模式 半主机机制的作用 半主机是作用于ARM目标的一种机制,可以将来自STM32单片机应用程序的输入与输出请求传送至运行仿真器的PC主机上.使用此机制可以启用C库中的函数,如printf() ...
- Oracle【ORA-00600 internal error code arguments [2662]】恢复一例
背景 1.数据库版本:11.2.0.4 2.未开启归档 3.没有备份:无RMAN备份.无DUMP备份 4.数据库redo log全部删除. 解决思路: Oracle 的隐含参数: _allow_res ...
- LocalDateTime 时间偏移量的处理
一.代码处理块 // 当前系统时间两年后的时间 LocalDateTime expirationTime = LocalDateTimeUtil.offset(LocalDateTime.now(), ...
- 4G EPS 的架构模型
目录 文章目录 目录 前文列表 EPS 的架构 EPS 的架构模型 E-UTRAN UE eNodeB EPC MME(移动性管理) SGW(本地移动性锚点) PGW(业务锚点) HSS(用户认证及鉴 ...