LeetCode 72. Edit Distance 编辑距离 (C++/Java)
题目:
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
分析:
给定两个单词,求word1转换到word2需要的最少步骤,转换的操作有三种,分别是插入一个字符,删除一个字符,替换一个字符。
d(word1, word2)用来求两个单词转换的需要的最小步数,那么如果当两个单词的最后一个字符是相同的,则d(word1, word2) = d(word1', word2')其word1'和word2'是分别去掉最后一个字符的单词。
如果最后两个字符不相同时,我们就需要操作来进行转换,一种是在word1后增加一个字符,是其最后一个字符和word2的最后一个字符相同,一种是删去word1的最后一个字符,一种是将word1的最后一个字符转换成word2的最后一个字符,那么此时最小的步数就是前三个操作的最小值加上1.
可能有同学会问为什么不在word2上进行操作,实际上操作转换这一步是有5个子问题的,但实际上在word1后增加一个字符和word2最后字符相同,相当于在word2后删除字符;删去word1的字符相当于在word2后增加一个字符和word1最后字符相同;而转换操作明显是一样的,所以就合并成为了三个子问题。
当递归执行到其中一个串为空串时,则加上另一个串的长度即可,相当于删去所有的字符。
程序:
C++
class Solution {
public:
int minDistance(string word1, string word2) {
int l1 = word1.length();
int l2 = word2.length();
dp = vector<vector<int>>(l1+1, vector<int>(l2+1, -1));
return minDistance(word1, word2, l1, l2);
}
private:
vector<vector<int>> dp;
int minDistance(string& word1, string& word2, int l1, int l2){
if(l1 == 0)
return l2;
if(l2 == 0)
return l1;
if(dp[l1][l2] >= 0)
return dp[l1][l2];
int res = 0;
if(word1[l1-1] == word2[l2-1]){
res = minDistance(word1, word2, l1-1, l2-1);
dp[l1][l2] = res;
return res;
}
res = min(minDistance(word1, word2, l1-1, l2),
min(minDistance(word1, word2, l1, l2-1),
minDistance(word1, word2, l1-1, l2-1))) + 1;
dp[l1][l2] = res;
return res;
}
};
Java
class Solution {
public int minDistance(String word1, String word2) {
int l1 = word1.length();
int l2 = word2.length();
dp = new int[l1+1][l2+1];
for(int i = 0; i < dp.length; ++i){
for(int j = 0; j < dp[i].length; ++j){
dp[i][j] = -1;
}
}
return minDistance(word1, word2, l1, l2);
}
private int minDistance(String word1, String word2, int l1, int l2){
if(l1 == 0) return l2;
if(l2 == 0) return l1;
if(dp[l1][l2] >= 0)
return dp[l1][l2];
int res = 0;
if(word1.charAt(l1-1) == word2.charAt(l2-1)){
res = minDistance(word1, word2, l1-1, l2-1);
}else{
res = Math.min(minDistance(word1, word2, l1-1, l2),
Math.min(minDistance(word1, word2, l1, l2-1),
minDistance(word1, word2, l1-1, l2-1))) + 1;
}
dp[l1][l2] = res;
return res;
}
private int[][] dp;
}
LeetCode 72. Edit Distance 编辑距离 (C++/Java)的更多相关文章
- [LeetCode] 72. Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- leetCode 72.Edit Distance (编辑距离) 解题思路和方法
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- [LeetCode] 72. Edit Distance(最短编辑距离)
传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...
- 【LeetCode】72. Edit Distance 编辑距离(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 记忆化搜索 动态规划 日期 题目地址:http ...
- LeetCode - 72. Edit Distance
最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...
- [leetcode]72. Edit Distance 最少编辑步数
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- 72. Edit Distance(编辑距离 动态规划)
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- 第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP
Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三 ...
- [leetcode] 72. Edit Distance (hard)
原题 dp 利用二维数组dp[i][j]存储状态: 从字符串A的0~i位子字符串 到 字符串B的0~j位子字符串,最少需要几步.(每一次删增改都算1步) 所以可得边界状态dp[i][0]=i,dp[0 ...
- 【Leetcode】72 Edit Distance
72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...
随机推荐
- Jenkins集成GitLab的正确姿势,实现Git代码提交触发CI/CD
❝ jenkins和gitlab是目前DevOps工具链中最常见的,抛开gitlab-ci不谈,gitlab代码提交触发jenkins流水线是最经典的搭配. 这里就介绍下如何配置实现jenkins和g ...
- ORA-29277:invalid SMTP operation
ORA-29277:invalid SMTP operation 邮件发送的时候出现报错 ORA-29277:invalid SMTP operation 官方解释就很简单 但是实际上重试是不行的,几 ...
- SLS控制台内嵌操作指南
简介: SLS控制台内嵌操作指南 一.机制 详见:https://help.aliyun.com/document_detail/74971.html 二.操作 2.1 子账号操作(主账号身份操作) ...
- [FE] yarn, npm 切换镜像源
yarn 设置命令如下,会修改 ~/.yarnrc 内容. $ yarn config set registry https://registry.yarnpkg.com npm 设置命令如下,会修改 ...
- 基于EPCLYPS的DDS控制器(二)
关于ZmodAWGController ZmodAWGController 介绍 双击IP核,进入的第一个界面会有Ch1 Gain Static Configuration的选项修改为 "0 ...
- ESP32 + IDF + LED
一.开发板 ESP32-S3-DevKitC-1 管脚布局 由于这个程序控制比较简单,就不赘述了,直接看程序. 二.程序 #include "freertos/FreeRTOS.h" ...
- JOISC2018 题解
\(\text{By DaiRuiChen007}\) Contest Link A. Construction of Highway Problem Link 题目大意 给 \(n\) 个点,初始每 ...
- 使用sshfs-win将linux服务器目录挂载到windows下
可以直接将服务器上的目录挂载到 Windows 的资源管理器,相当于多了一个磁盘,这样子就可以直接将数据下载到服务器上了,挺方便的. 原理说明 一般情况下,我们可以通过 samba 协议挂载远程服务器 ...
- 4G EPS 中的 Bearer
目录 文章目录 目录 前文列表 承载的内涵 EPS Bearer QoS QoS 的关键参数 APR GBR.MBR AMBR UE 是如何选择 EPS Bearer 的? E-RAB Radio B ...
- java学习之旅(day.05)
switch多选择结构 多选择结构还有一个实现方式就是switch case switch case 语句判断一个变量与一系列值中某个值是否相等,每个值称为一个分支 switch(expression ...