1. SVM概率化输出

标准的SVM进行预测 输出的结果是:



是无法输出0-1之间的 正样本 发生的概率值

sigmoid-fitting 方法:

将标准 SVM 的输出结果进行后处理,转换成后验概率



A,B 为待拟合的参数, f 为样本 x 的无阈值输出。

定义训练集为(fi,ti)



yi 为样本的所属类别,取值{-1,1}

利用之前的逻辑回归:

极小化训练集上的负对数似然函数





求出A和B,即可得到SVM的概率输出

import numpy as np
from sklearn.svm import SVC X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
cld = SVC(probability=True)
cld.fit(X, y) print(cld.predict([[-0.8, -1]]))
print(cld.predict_proba([[-0.8, -1]]))

2. 合页损失

SVM某一条样本的损失



y(wx+b) >=1 分类正确 都没有损失

0<y(wx+b)<1 边界与超平面之间 有损失但是较小

y(wx+b)<0 彻底的分错了 loss=1+嵌入的深度

损失+正则项 得到目标函数:

机器学习-线性分类-支持向量机SVM-合页损失-SVM输出概率值-16的更多相关文章

  1. 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  2. 线性可分支持向量机与软间隔最大化--SVM(2)

    线性可分支持向量机与软间隔最大化--SVM 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 我们说可以通过间隔最 ...

  3. 线性可分支持向量机--SVM(1)

    线性可分支持向量机--SVM (1) 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 线性可分支持向量机的定义: ...

  4. svm 之 线性可分支持向量机

    定义:给定线性可分训练数据集,通过间隔最大化或等价的求解凸二次规划问题学习获得分离超平面和分类决策函数,称为线性可分支持向量机. 目录: • 函数间隔 • 几何间隔 • 间隔最大化 • 对偶算法 1. ...

  5. 统计学习:线性可分支持向量机(SVM)

    模型 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{ ...

  6. 简介支持向量机热门(认识SVM三位置)

    支持向量机通俗导论(理解SVM的三层境地) 作者:July .致谢:pluskid.白石.JerryLead.出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector ...

  7. 支持向量机通俗导论(SVM学习)

    1.了解SVM 支持向量机,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是 ...

  8. 支持向量机通俗导论 ——理解SVM的三层境界 总结

    1.什么是支持向量机(SVM) 所谓支持向量机,顾名思义,分为两部分了解:一,什么是支持向量(简单来说,就是支持或支撑平面上把两类类别划分开来的超平面的向量点):二,这里的“机(machine,机器) ...

  9. Python实现鸢尾花数据集分类问题——基于skearn的SVM

    Python实现鸢尾花数据集分类问题——基于skearn的SVM 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaoli ...

  10. 机器学习理论基础学习3.3--- Linear classification 线性分类之logistic regression(基于经验风险最小化)

    一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出 ...

随机推荐

  1. JUC——让步与优先级

    Thread.yield():方法作用是:暂停当前正在执行的线程对象(及放弃当前拥有的cup资源),并执行其他线程 yield():做的是让当前运行线程回到可运行的状态,以允许具有相同优先级的其他线程 ...

  2. vue-test4 -----插槽

    <template> <!-- <Main class="cccc"/> <component-a/> --> <slot-d ...

  3. Mybatis|MybatisPlus批量插入

    创建一个SpringBoot工程 <?xml version="1.0" encoding="UTF-8"?> <project xmlns= ...

  4. NLP复习之N元文法

    N元文法的统计 二元概率方程: \[P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})} \] 三元概率估计方程: \[P(w_n|w_{n-2},w_{ ...

  5. nodejs 中npm下载依赖速度慢的问题

    已解决:nodejs 中npm下载依赖速度慢的问题 强烈建议不要用直接使用 cnpm 安装,会有各种诡异的 bug 可以通过重新指定 registry 来解决 npm 安装速度慢的问题 点击查看代码 ...

  6. 2023总结与展望--Empirefree

    今年一篇博客都没写过了,好像完全在忙在工作和生活上面了,珍惜自我,保持热情,2024对我好点 目录 1. 年终总结 1.1.学习工作计划 1.2. 生活计划 1.3 个人总结 2. 未来展望 1. 年 ...

  7. ASR项目实战-方案设计

    对于语音识别产品的实施方案,给出简易的业务流程,仅供参考. 如下流程图,可以使用如下两个站点查看. web chart Web Sequence Diagrams 文件转写 创建文件转写任务 客户应用 ...

  8. DVWA Insecure CAPTCHA(不安全的验证码)全等级

    Insecure CAPTCHA(不安全的验证码) 目录: Insecure CAPTCHA(不安全的验证码) 1. Low 2.Medium 3. High 4.Impossible 加载验证码需要 ...

  9. Tpon 1.0 一键查询网站存在过的路径

    Tpon 1.0 寻找网站存在过的路径 该工具能够让你发现意料之外的路径 工具描述 编写该工具旨在寻找网站存在过的网站路径,这个地址可能是机器爬下来的也可能是某些人访问过的,在表面你可能看不到它的入口 ...

  10. 技术驱动,数据赋能,华为云GaussDB给世界一个更优选择

    摘要:5月16日,"数智深耕 让美好发生 2023华为云城市峰会广州站"成功举行. 5月16日,"数智深耕 让美好发生 2023华为云城市峰会广州站"成功举行. ...