1. SVM概率化输出

标准的SVM进行预测 输出的结果是:



是无法输出0-1之间的 正样本 发生的概率值

sigmoid-fitting 方法:

将标准 SVM 的输出结果进行后处理,转换成后验概率



A,B 为待拟合的参数, f 为样本 x 的无阈值输出。

定义训练集为(fi,ti)



yi 为样本的所属类别,取值{-1,1}

利用之前的逻辑回归:

极小化训练集上的负对数似然函数





求出A和B,即可得到SVM的概率输出

import numpy as np
from sklearn.svm import SVC X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
cld = SVC(probability=True)
cld.fit(X, y) print(cld.predict([[-0.8, -1]]))
print(cld.predict_proba([[-0.8, -1]]))

2. 合页损失

SVM某一条样本的损失



y(wx+b) >=1 分类正确 都没有损失

0<y(wx+b)<1 边界与超平面之间 有损失但是较小

y(wx+b)<0 彻底的分错了 loss=1+嵌入的深度

损失+正则项 得到目标函数:

机器学习-线性分类-支持向量机SVM-合页损失-SVM输出概率值-16的更多相关文章

  1. 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  2. 线性可分支持向量机与软间隔最大化--SVM(2)

    线性可分支持向量机与软间隔最大化--SVM 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 我们说可以通过间隔最 ...

  3. 线性可分支持向量机--SVM(1)

    线性可分支持向量机--SVM (1) 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 线性可分支持向量机的定义: ...

  4. svm 之 线性可分支持向量机

    定义:给定线性可分训练数据集,通过间隔最大化或等价的求解凸二次规划问题学习获得分离超平面和分类决策函数,称为线性可分支持向量机. 目录: • 函数间隔 • 几何间隔 • 间隔最大化 • 对偶算法 1. ...

  5. 统计学习:线性可分支持向量机(SVM)

    模型 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{ ...

  6. 简介支持向量机热门(认识SVM三位置)

    支持向量机通俗导论(理解SVM的三层境地) 作者:July .致谢:pluskid.白石.JerryLead.出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector ...

  7. 支持向量机通俗导论(SVM学习)

    1.了解SVM 支持向量机,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是 ...

  8. 支持向量机通俗导论 ——理解SVM的三层境界 总结

    1.什么是支持向量机(SVM) 所谓支持向量机,顾名思义,分为两部分了解:一,什么是支持向量(简单来说,就是支持或支撑平面上把两类类别划分开来的超平面的向量点):二,这里的“机(machine,机器) ...

  9. Python实现鸢尾花数据集分类问题——基于skearn的SVM

    Python实现鸢尾花数据集分类问题——基于skearn的SVM 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaoli ...

  10. 机器学习理论基础学习3.3--- Linear classification 线性分类之logistic regression(基于经验风险最小化)

    一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出 ...

随机推荐

  1. C# 从代码入门 Mysql 数据库事务

    目录 生成数据库数据 Mysql 数据库事务基础 数据库的并发一致性问题 数据库事务的隔离级别 BeginTransaction() 和 TransactionScope 的区别 BeginTrans ...

  2. Mybatis-Flex核心功能之@Id

    1.是什么? 在 Entity 类中,MyBatis-Flex 是使用 @Id 注解来标识主键的 2.怎么玩? public @interface Id { /** * ID 生成策略,默认为 non ...

  3. SpringBoot 这么实现动态数据源切换,就很丝滑!

    大家好,我是小富- 简介 项目开发中经常会遇到多数据源同时使用的场景,比如冷热数据的查询等情况,我们可以使用类似现成的工具包来解决问题,但在多数据源的使用中通常伴随着定制化的业务,所以一般的公司还是会 ...

  4. 中企网安信息科技:数据防泄密DLP管理系统概述

    由华企网安总公司北京中企网安信息科技有限责任公司开发的<数据防泄密DLP管理系统>,获得国家版权局颁发的计算机软件著作权登记证书. 数据防泄密DLP管理系统是用于保护.监控和管理敏感数据的 ...

  5. Win11环境Mecab日语分词和词性分析以及动态库DLL not found问题(Python3.10)

    日语因为存在假名,会导致翻译软件进行翻译时机翻味道过重的问题,比如積ん読(つんどく)这个词,大多数软件会翻译成:堆积的读,但其实是明明买了书却不读,光放着的意思.有时候也需要单独查句子中的单词释义来理 ...

  6. Python——第五章:shutil模块

    复制文件 把dir1的文件a.txt 移动到dir2内 import shutil shutil.move("dir1/a.txt", "dir2") 复制两个 ...

  7. 如何找到 niche 出海细分市场的 IDEA

    先说结论就是:看榜单 Why:为什么看榜单? 大家会问为什么?原因很简单: 熟读唐诗三百首,不会作诗也会吟 不天天看榜单上相关的优秀同行,你想干啥 心法就是下苦功夫坚持,量变引起质变,排行榜天天看 竞 ...

  8. 【scikit-learn基础】--『监督学习』之 贝叶斯分类

    贝叶斯分类是一种统计学分类方法,基于贝叶斯定理,对给定的数据集进行分类.它的历史可以追溯到18世纪,当时英国统计学家托马斯·贝叶斯发展了贝叶斯定理,这个定理为统计决策提供了理论基础. 不过,贝叶斯分类 ...

  9. spring与jndi(数据库连接)SpringBoot打war包并整合jsp

    spring与jndi(数据库连接)SpringBoot打war包并整合jsp,这里的jndi指的是jdbc连接,不是其他的.有传统servlet+spring和springboot的jndi连接操作 ...

  10. k8s在删除pod时优雅关闭sigterm信号传输失败

    背景 随着云原生技术的流行,越来越多的应用选择容器化,容器化的话题自然离不开 Kubernetes .Pod 是 Kubernetes 中创建和管理的.最小的可部署的计算单元,一个 Pod 中有多个容 ...