[模板] 最近公共祖先/lca
简介
最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点.
定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * (r,fa(lca))\). (树上差分)
求法
tarjan
离线算法, 总时间 \(O(n+q)\). (q表示询问次数)
//利用前向星存储询问
struct te{int t,pr,lca;}edge[1000050],qedge[1000050];
int head[500050],pe=1,qhead[500050],pq=1;
void adde(int f,int t){
edge[++pe].t=t;
edge[pe].pr=head[f];
head[f]=pe;
}
void addq(int f,int t){
qedge[++pq].t=t;
qedge[pq].pr=qhead[f];
qhead[f]=pq;
}
//并查集
int fa[500050];
int find(int p){return p==fa[p]?p:fa[p]=find(fa[p]);}
void merge(int l,int r){fa[r]=l;}//merge r to l
//tarjan
int vi[500050];
void tar(int p){
vi[p]=1;
for(int i=head[p];i;i=edge[i].pr){
if(vi[edge[i].t])continue;
tar(edge[i].t);
merge(p,edge[i].t);
}
for(int i=qhead[p];i;i=qedge[i].pr)
if(vi[qedge[i].t])
qedge[i].lca=qedge[i^1].lca=find(qedge[i].t);
}
倍增
\(O(n\log n)\)预处理, \(O(\log n)\) 查询, \(O(n\log n)\)空间. 由于利用结合律, 可以维护一些链上信息. 可以动态维护.
int fa[nsz][20],dep[nsz]{-1};
//动态维护
void addfa(int p,int f){
dep[p]=dep[f]+1;
fa[p][0]=f;
rep(i,1,18)fa[p][i]=fa[fa[p][i-1]][i-1];
}
//静态
void init(){
dfs(1,0); //get fa[i][0]
rep(i,1,18)rep(j,1,n)fa[j][i]=fa[fa[j][i-1]][i-1];
}
int lca(int a,int b){
if(dep[a]<dep[b])swap(a,b);
repdo(i,18,0)if(dep[fa[a][i]]>=dep[b])a=fa[a][i];
if(a==b)return a;
repdo(i,18,0)if(fa[a][i]!=fa[b][i])a=fa[a][i],b=fa[b][i];
return fa[a][0];
}
欧拉序+rmq
\(O(n\log n)\)预处理, \(O(1)\) 查询, \(O(n\log n)\)空间.
int l2n[nsz*3+50];
int eul[nsz*3],cnt=0,vis[nsz],d[nsz];
int stt[nsz*3][21];
void dfs(int u,int fa){
eul[++cnt]=u;
if(vis[u]==0)vis[u]=cnt,d[u]=d[fa]+1;
for(int i=hd[u],v=edge[i].t;i;i=edge[i].pr,v=edge[i].t){
if(v==fa)continue;
dfs(v,u);
eul[++cnt]=u;
}
}
int dmin(int a,int b){return d[a]<=d[b]?a:b;}
void rmq(){
rep(i,1,cnt)stt[i][0]=eul[i];
rep(j,1,l2n[pe]){
rep(i,1,pe+1-(1<<j)){
stt[i][j]=dmin(stt[i][j-1],stt[i+(1<<(j-1))][j-1]);
}
}
}
int stqu(int a,int b){
int l=l2n[b-a+1];
return dmin(stt[a][l],stt[b-(1<<l)+1][l]);
}
void eulinit(){
int l=0;
rep(i,1,n*3){
if(i==(1<<(l+1)))++l;
l2n[i]=l;
}
dfs(s,0);
rmq();
}
int lca(int a,int b){
int x=vis[a],y=vis[b];
if(x>y)swap(x,y);
return stqu(x,y);
}
树链剖分
\(O(n)\)预处理, \(O(\log n)\) 查询, \(O(n)\)空间. 由于利用结合律, 可以维护一些链上信息.
int dep[nsz],sz[nsz],son[nsz],fa[nsz],top[nsz];
void dfs1(int p,int f){
sz[p]=1,dep[p]=dep[f]+1,fa[p]=f;
for(int i=hd[p],v=edge[i].t;i;i=edge[i].pr,v=edge[i].t){
if(v==f)continue;
dfs1(v,p);
sz[p]+=sz[v];
if(son[p]==0||sz[son[p]]<sz[v])son[p]=v;
}
}
void dfs2(int p,int tv){
top[p]=tv;
if(son[p])dfs2(son[p],tv);
for(int i=hd[p],v=edge[i].t;i;i=edge[i].pr,v=edge[i].t){
if(v==fa[p]||v==son[p])continue;
dfs2(v,v);
}
}
int lca(int x,int y){
while(top[x]!=top[y]){
if(dep[top[x]]>=dep[top[y]])x=fa[top[x]];
else y=fa[top[y]];
}
return dep[x]<dep[y]?x:y;
}
[模板] 最近公共祖先/lca的更多相关文章
- Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- 【lhyaaa】最近公共祖先LCA——倍增!!!
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...
- 最近公共祖先(LCA)模板
以下转自:https://www.cnblogs.com/JVxie/p/4854719.html 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖 ...
- HDU 2586 How far away ?(LCA模板 近期公共祖先啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the vi ...
- luogu3379 【模板】最近公共祖先(LCA) 倍增法
题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...
- 最近公共祖先lca模板
void dfs(int x,int root){//预处理fa和dep数组 fa[x][0]=root; dep[x]=dep[root]+1; for(int i=1;(1<<i)&l ...
- 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)
题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...
随机推荐
- import提升导致Fundebug报错:“请配置apikey”
摘要: 解释一下"请配置apikey"报错的原因. 部分Fundebug用户使用import来导入js文件时,出现了"请配置apikey"的报错,这是由于imp ...
- jsp基础语言-jsp注释
JSP注释可分为客户端注释和服务器端注释. 客户端注释:用户可通过浏览器中的源代码查看,且这种注释可以加入JSP表达式. 语法:<!-- 客户端注释[<%=表达式%>] --> ...
- [总结]WEB前端开发常用的CSS/CSS3知识点
css3新单位vw.vh.vmin.vmax vh: 相对于视窗的高度, 视窗被均分为100单位的vh; vw: 相对于视窗的宽度, 视窗被均分为100单位的vw; vmax: 相对于视窗的宽度或高度 ...
- max-width和width的区别
width为宽度 max-width为最大宽度 如果设置了width,那宽度就定死了,不能动态的改变,显得僵硬 而设置了max-width,实际宽度可以在0~max-width之间,当元素内部宽度不足 ...
- Windows WMIC命令使用详解(附实例)
第一次执行WMIC命令时,Windows首先要安装WMIC,然后显示出WMIC的命令行提示符.在WMIC命令行提示符上,命令以交互的方式执行 执行“wmic”命令启动WMIC命令行环境.这个命令可以在 ...
- Linux 配置本地源 (Ubuntu / CentOS)
目录 Linux local source list A. Ubuntu 1. 本地ISO 2. 制作本地源 B. CentOS 1. 本地ISO Linux local source list A. ...
- Kubernetes 集群日志管理 - 每天5分钟玩转 Docker 容器技术(180)
Kubernetes 开发了一个 Elasticsearch 附加组件来实现集群的日志管理.这是一个 Elasticsearch.Fluentd 和 Kibana 的组合.Elasticsearch ...
- 电信中兴F460光猫sendcmd命令
1.安装xshell后,使用命令行登陆root用户,root用户密码Zte521(湖北地区) 2.查看所有用户密码 sendcmd 1 DB p DevAuthInfo 3.打开网页登陆teleco ...
- 【Teradata】安装SQL Assistant和Administrator 16.20(含查看.net版本)
1.安装介质获取: 获取的路径:connections==>Gateways==>Customer Services==>TOOLS & APPLICATIONS(点击Mor ...
- $.extend()浅拷贝深拷贝
参考网址:http://bijian1013.iteye.com/blog/2255037 jQuery.extend() 函数用于将一个或多个对象的内容合并到目标对象. 注意:1. 如果只为$.ex ...