[模板] 最近公共祖先/lca
简介
最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点.
定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * (r,fa(lca))\). (树上差分)
求法
tarjan
离线算法, 总时间 \(O(n+q)\). (q表示询问次数)
//利用前向星存储询问
struct te{int t,pr,lca;}edge[1000050],qedge[1000050];
int head[500050],pe=1,qhead[500050],pq=1;
void adde(int f,int t){
edge[++pe].t=t;
edge[pe].pr=head[f];
head[f]=pe;
}
void addq(int f,int t){
qedge[++pq].t=t;
qedge[pq].pr=qhead[f];
qhead[f]=pq;
}
//并查集
int fa[500050];
int find(int p){return p==fa[p]?p:fa[p]=find(fa[p]);}
void merge(int l,int r){fa[r]=l;}//merge r to l
//tarjan
int vi[500050];
void tar(int p){
vi[p]=1;
for(int i=head[p];i;i=edge[i].pr){
if(vi[edge[i].t])continue;
tar(edge[i].t);
merge(p,edge[i].t);
}
for(int i=qhead[p];i;i=qedge[i].pr)
if(vi[qedge[i].t])
qedge[i].lca=qedge[i^1].lca=find(qedge[i].t);
}
倍增
\(O(n\log n)\)预处理, \(O(\log n)\) 查询, \(O(n\log n)\)空间. 由于利用结合律, 可以维护一些链上信息. 可以动态维护.
int fa[nsz][20],dep[nsz]{-1};
//动态维护
void addfa(int p,int f){
dep[p]=dep[f]+1;
fa[p][0]=f;
rep(i,1,18)fa[p][i]=fa[fa[p][i-1]][i-1];
}
//静态
void init(){
dfs(1,0); //get fa[i][0]
rep(i,1,18)rep(j,1,n)fa[j][i]=fa[fa[j][i-1]][i-1];
}
int lca(int a,int b){
if(dep[a]<dep[b])swap(a,b);
repdo(i,18,0)if(dep[fa[a][i]]>=dep[b])a=fa[a][i];
if(a==b)return a;
repdo(i,18,0)if(fa[a][i]!=fa[b][i])a=fa[a][i],b=fa[b][i];
return fa[a][0];
}
欧拉序+rmq
\(O(n\log n)\)预处理, \(O(1)\) 查询, \(O(n\log n)\)空间.
int l2n[nsz*3+50];
int eul[nsz*3],cnt=0,vis[nsz],d[nsz];
int stt[nsz*3][21];
void dfs(int u,int fa){
eul[++cnt]=u;
if(vis[u]==0)vis[u]=cnt,d[u]=d[fa]+1;
for(int i=hd[u],v=edge[i].t;i;i=edge[i].pr,v=edge[i].t){
if(v==fa)continue;
dfs(v,u);
eul[++cnt]=u;
}
}
int dmin(int a,int b){return d[a]<=d[b]?a:b;}
void rmq(){
rep(i,1,cnt)stt[i][0]=eul[i];
rep(j,1,l2n[pe]){
rep(i,1,pe+1-(1<<j)){
stt[i][j]=dmin(stt[i][j-1],stt[i+(1<<(j-1))][j-1]);
}
}
}
int stqu(int a,int b){
int l=l2n[b-a+1];
return dmin(stt[a][l],stt[b-(1<<l)+1][l]);
}
void eulinit(){
int l=0;
rep(i,1,n*3){
if(i==(1<<(l+1)))++l;
l2n[i]=l;
}
dfs(s,0);
rmq();
}
int lca(int a,int b){
int x=vis[a],y=vis[b];
if(x>y)swap(x,y);
return stqu(x,y);
}
树链剖分
\(O(n)\)预处理, \(O(\log n)\) 查询, \(O(n)\)空间. 由于利用结合律, 可以维护一些链上信息.
int dep[nsz],sz[nsz],son[nsz],fa[nsz],top[nsz];
void dfs1(int p,int f){
sz[p]=1,dep[p]=dep[f]+1,fa[p]=f;
for(int i=hd[p],v=edge[i].t;i;i=edge[i].pr,v=edge[i].t){
if(v==f)continue;
dfs1(v,p);
sz[p]+=sz[v];
if(son[p]==0||sz[son[p]]<sz[v])son[p]=v;
}
}
void dfs2(int p,int tv){
top[p]=tv;
if(son[p])dfs2(son[p],tv);
for(int i=hd[p],v=edge[i].t;i;i=edge[i].pr,v=edge[i].t){
if(v==fa[p]||v==son[p])continue;
dfs2(v,v);
}
}
int lca(int x,int y){
while(top[x]!=top[y]){
if(dep[top[x]]>=dep[top[y]])x=fa[top[x]];
else y=fa[top[y]];
}
return dep[x]<dep[y]?x:y;
}
[模板] 最近公共祖先/lca的更多相关文章
- Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- 【lhyaaa】最近公共祖先LCA——倍增!!!
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...
- 最近公共祖先(LCA)模板
以下转自:https://www.cnblogs.com/JVxie/p/4854719.html 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖 ...
- HDU 2586 How far away ?(LCA模板 近期公共祖先啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the vi ...
- luogu3379 【模板】最近公共祖先(LCA) 倍增法
题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...
- 最近公共祖先lca模板
void dfs(int x,int root){//预处理fa和dep数组 fa[x][0]=root; dep[x]=dep[root]+1; for(int i=1;(1<<i)&l ...
- 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)
题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...
随机推荐
- TypeScript,初次见面,请多指教 ?
为什么用 TS ? 说实话,最开始并没有想把 TS 用到实际项目中来,一来是感觉"类型"会限制 JS 的优势(好吧,就是浪写浪惯了):二来听闻 TS + Redux 的酸爽滋味,有 ...
- Java中的会话Cookie&&Session
会话技术 会话: 一次会话中包含多次请求和响应. 一次会话:浏览器第一次给服务器资源发送请,会话建立,直到有一方断开为止 功能:在一次会话的范围内的多次请求之间共享数据 方式: 客户端会话技术:coo ...
- TCP客户端
TCP通信客户端-解决数据包接收不全的过程 背景:5个串口条码枪,通过MOXA Nport系列转换器,以TCPServer的形式推送扫描到的条码到客户端.5个条码枪均位于流水线上方的支架上,流水线货物 ...
- EBGP在非直连网络时,需要配置ebgp的最大跳数,否则无法建立非直连的EBGP邻居
结论: 1.默认情况下,EBGP只能在物理直连的路由器之间建立邻居. 2.要想配置非直连设备间的BGP邻居,必须加配置. 组网图: 抓包: 1.默认情况下,EBGP邻居之间的BGP报文的TTL为1. ...
- 免费试用MongoDB云数据库 (MongoDB Atlas)教程
众所周知,MongoDB包括社区版和企业版,但不止如此,MongoDB公司还有MongoDB Atlas:Database as a Service. MongoDB Atlas delivers t ...
- electron入坑指南
electron入坑指南 简介 electron 实际集成chrome浏览器和node环境, 运行你写的网页 app 基本目录结构 index.html 名称可以不是index, 这个文件与普通网页的 ...
- nginx 防止盗链
1.测试盗链(www.html2.com 盗取 www.html5.com的图片) 2.防止盗链 符合盗链 —— 重写 说明:if ($invalid_referer) {,if的后面是有空格的,如果 ...
- Spark之Yarn提交模式
一.Client模式 提交命令: ./spark-submit --master yarn --class org.apache.examples.SparkPi ../lib/spark-examp ...
- bug管理工具之禅道的测试模块的使用
https://www.cnblogs.com/evablogs/p/6785017.html 角色:产品经理PO,项目经理PM,开发,测试 测试任务: bug: 1.维护bug视图模块:[测试]-[ ...
- Linux/Unix环境下的make命令详解
https://blog.csdn.net/wxqian25/article/details/21226711