Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))

()()()

([]])

)[)(

([][][)

end

Sample Output

6

6

4

0

6

题意:现在已知一个由'()''[]'组成的括号序列 问其中括号匹配数最大的子序列个数

思路:

这里的状态转移是以一个if为基础的,如果s[i]与s[j]匹配,那么明显的dp[i][j] = dp[i+1][j-1];然后在这个基础上枚举分割点k.

状态转移方程:dp[i][j]表示第i~j个字符间的最大匹配对数。

if(s[i] 与 s[j]匹配) dp[i][j] = d[[i+1][j-1] +1;

dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+1][j]);

最后乘2即可

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int dp[][];
string s;
int jug(int i,int j){
return (s[i]=='['&&s[j]==']')||(s[i]=='('&&s[j]==')');
}
int main(){
ios::sync_with_stdio(false); while(cin>>s){
if(s=="end") break;
memset(dp,,sizeof(dp));
int n=s.length();
for(int len=;len<=n;len++){
for(int i=;i+len<=n+;i++){
int j=i+len-;
dp[i][j]=dp[i+][j-]+jug(i-,j-);
for(int k=i;k<j;k++)
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+][j]);
}
}
cout<<*dp[][n]<<endl;
}
return ;
}

poj 2955 Brackets (区间dp 括号匹配)的更多相关文章

  1. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  2. poj 2955"Brackets"(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 给你一个只由 '(' , ')' , '[' , ']' 组成的字符串s[ ], ...

  3. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  4. POJ 2955 Brackets 区间DP 最大括号匹配

    http://blog.csdn.net/libin56842/article/details/9673239 http://www.cnblogs.com/ACMan/archive/2012/08 ...

  5. POJ 2955 Brackets 区间DP 入门

    dp[i][j]代表i->j区间内最多的合法括号数 if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']') dp[i][j] ...

  6. POJ 2955 Brackets(区间DP)

    题目链接 #include <iostream> #include <cstdio> #include <cstring> #include <vector& ...

  7. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  8. 区间dp 括号匹配问题

    这道题目能用区间dp来解决,是因为一个大区间的括号匹配数是可以由小区间最优化选取得到(也就是满足最优子结构) 然后构造dp 既然是区间类型的dp 一般用二维 我们定义dp[i][j] 表示i~j这个区 ...

  9. 区间dp - 括号匹配并输出方案

    Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular seque ...

随机推荐

  1. Android为TV端助力 进制互相转换

    byte转换为16进制 public static String GetByte2Str(byte b) { byte[] buff = new byte[2]; buff[0] = mHex[(b ...

  2. 算法: 整数中1出现的次数(从1到n整数中1出现的次数)

    问题: 整数中1出现的次数(从1到n整数中1出现的次数) 问题:求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数? 为此他特别数了一下1~13中包含1的数字有1.10.11 ...

  3. TDBGridEh 标头排序

    数据源为adoQuery 1.首先设置dbGridEh里需要排序的字段的Title->Titlebutton属性为true 2.设置dgGridEh的optionsEh->dbhautoS ...

  4. QQ邮箱开启SMTP方法如何授权

    步骤一: 在打开的邮箱中心,进入设置 步骤二 从邮箱设置中心,进入帐户 步骤三 在这里可以看到POP3/SMTP服务被关闭了,因此客户端会收不到邮件,我们来开启它,查看该服务为已开启时,就可以用客户端 ...

  5. SQL学习笔记---常用命令

    常用命令 变量 1.声明 declare @变量名 类型,… 2.赋值 1.同时赋值多个变量(可以结合查询) select @变量名=表达式1,表达式2 2.单个赋值(推荐) set @变量名=表达式 ...

  6. python 实例四

    https://www.cnblogs.com/evablogs/p/6754981.html 题目:输入某年某月某日,判断这一天是这一年的第几天? 程序分析: 月份天数: 月份 天数 2 平年28天 ...

  7. python 完整项目开发流程

    1. 安装 python    2. 安装virtualenvwrapper    3. 虚拟环境相关操作    4. 进入虚拟环境, 安装django    5. 安装编辑器    6. 安装mys ...

  8. 【Linux基础】Unix与Linux操作系统介绍

    一.Unix和Linux操作系统概述 1.Unix是什么 UNIX是一个计算机操作系统,一个用来协调.管理和控制计算机硬件和软件资源的控制程序. 2.Unix特点 (1)多用户:在同一时刻可以有多个用 ...

  9. UVA - 11478 - Halum(二分+差分约束系统)

    Problem  UVA - 11478 - Halum Time Limit: 3000 mSec Problem Description You are given a directed grap ...

  10. 22 python 初学(类,面向对象)

    python: 函数式 + 面向对象 函数式可以做所有的事,是否合适? 面向对象: 一.定义: 函数: def + 函数名(参数) 面向对象: class  -> 名字叫 Bar 类 def   ...