【BZOJ】2820: YY的GCD
【题意】给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对。T<=10^4,N,M<=10^7。
【算法】数论(莫比乌斯反演)
【题解】公式推导见DQSSS。
推到ans= Σp是素数 Σd≤mins μ(d) * (n/pd) * (m/pd),mins=min(n/p,m/p)。
使用枚举取值的方法再枚举素数单次询问复杂度√n*(n/ln n),显然不能满足要求。
问题在于枚举素数,令T=pd,则:
ans= ΣT≤mins (n/T) * (m/T)*Σp|T&&p是素数 μ(T/p),mins=min(n,m)。
后面部分可以枚举素数的倍数预处理出μ前缀和,复杂度O((n/ln n)*ln n)即O(n)。
每次询问再枚举取值O(√n)解决。
总复杂度O(T*√n+n)。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,N=;
int miu[maxn],mius[maxn],prime[maxn],tot;
ll s[maxn];
bool mark[maxn];
void pre(){
miu[]=;
for(int i=;i<=N;i++){
if(!mark[i])miu[prime[++tot]=i]=-;
for(int j=;j<=tot&&i*prime[j]<=N;j++){
mark[i*prime[j]]=;
if(i%prime[j]==)break;
miu[i*prime[j]]=-miu[i];
}
}
for(int i=;i<=tot;i++){
for(int j=prime[i];j<=N;j+=prime[i])mius[j]+=miu[j/prime[i]];
}
for(int i=;i<=N;i++)s[i]=s[i-]+mius[i];
}
int main(){
pre();
int T,n,m;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int pos=,mins=min(n,m);ll ans=;
for(int i=;i<=mins;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans+=(s[pos]-s[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return ;
}
将枚举两个数改为枚举乘积和其中一个,即T和p|T,后面的p|T可以O(n log n)贡献处理前缀和。
【BZOJ】2820: YY的GCD的更多相关文章
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- 【刷题】BZOJ 2820 YY的GCD
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 2820 YY的GCD(莫比乌斯函数)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...
- bzoj 2820 YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻× ...
- ●BZOJ 2820 YY的GCD
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题解: 莫比乌斯反演 先看看这个题:HDU 1695 GCD(本题简化版) HDU 1 ...
随机推荐
- JAVA之路(一)
距离做下复习JAVA并学好JAVA的决定已经过去一周了,我买了慕课网的JAVA入门视频,在图书馆借了三本关于JAVA的书——两本是JAVA入门经典,一本是JAVA WEB开发宝典.我的计划是短时间内复 ...
- lintcode-439-线段树的构造 II
439-线段树的构造 II 线段树是一棵二叉树,他的每个节点包含了两个额外的属性start和end用于表示该节点所代表的区间.start和end都是整数,并按照如下的方式赋值: 根节点的 start ...
- lintcode-427-生成括号
427-生成括号 给定 n 对括号,请写一个函数以将其生成新的括号组合,并返回所有组合结果. 样例 给定 n = 3, 可生成的组合如下: "((()))", "(()( ...
- Java package
Java中的一个包就是一个类库单元,包内包含有一组类,它们在单一的名称空间之下被组织在了一起.这个名称空间就是包名.可以使用import关键字来导入一个包.例如使用import java.util.* ...
- 单机安装 consul ui 对外提供服务
Consul 安装启动ui,外网无法访问,应为Consul 默认绑定127.0.0.1 ,所以外网无法访问. 通过设置 -client 参数来设置 consul agent -server - ...
- promise你懂了吗?
你能答对几题? 题目一 const promise = new Promise((resolve, reject) => { console.log(1) resolve() console.l ...
- 【移动端debug-3】部分安卓机型不触发touchend事件的解决方案
最近在项目中遇到一个奇怪的问题,有一个需求是这样:页面上有一个按钮,滚动页面时让它消失,停止滚动时让它显示. 常规思路: step1.监听touchstart事件,记录Touch对象中pageY初始值 ...
- 第111天:Ajax之jQuery实现方法
由于jQuery中的Ajax方法是用了内置的deferred模块,是Promise模式的一种实现,而我们这里没有讲过,所以我们就不使用这一模式啦. 我们只定义一个Ajax方法,他可以简单的get,po ...
- BZOJ 1925 地精部落(DP)
一道很经典的DP题. 题意:求n排列中波动排列的种数. 不妨考虑DP,令dp1[i][j],表示1-j的排列中,第一项为i之后递增的波动排列种数.dp2[i][j]表示1-j的排列中,第一项为i之后递 ...
- 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心
题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...