【题意】给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对。T<=10^4,N,M<=10^7。

【算法】数论(莫比乌斯反演)

【题解】公式推导见DQSSS

推到ans= Σp是素数 Σd≤mins μ(d) * (n/pd) * (m/pd),mins=min(n/p,m/p)。

使用枚举取值的方法再枚举素数单次询问复杂度√n*(n/ln n),显然不能满足要求。

问题在于枚举素数,令T=pd,则:

ans= ΣT≤mins (n/T) * (m/T)*Σp|T&&p是素数 μ(T/p),mins=min(n,m)。

后面部分可以枚举素数的倍数预处理出μ前缀和,复杂度O((n/ln n)*ln n)即O(n)。

每次询问再枚举取值O(√n)解决。

总复杂度O(T*√n+n)。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,N=;
int miu[maxn],mius[maxn],prime[maxn],tot;
ll s[maxn];
bool mark[maxn];
void pre(){
miu[]=;
for(int i=;i<=N;i++){
if(!mark[i])miu[prime[++tot]=i]=-;
for(int j=;j<=tot&&i*prime[j]<=N;j++){
mark[i*prime[j]]=;
if(i%prime[j]==)break;
miu[i*prime[j]]=-miu[i];
}
}
for(int i=;i<=tot;i++){
for(int j=prime[i];j<=N;j+=prime[i])mius[j]+=miu[j/prime[i]];
}
for(int i=;i<=N;i++)s[i]=s[i-]+mius[i];
}
int main(){
pre();
int T,n,m;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int pos=,mins=min(n,m);ll ans=;
for(int i=;i<=mins;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans+=(s[pos]-s[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return ;
}

将枚举两个数改为枚举乘积和其中一个,即T和p|T,后面的p|T可以O(n log n)贡献处理前缀和。

【BZOJ】2820: YY的GCD的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  2. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  3. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  4. 【刷题】BZOJ 2820 YY的GCD

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...

  5. Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)

    2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

  6. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  7. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  8. BZOJ 2820 YY的GCD(莫比乌斯函数)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...

  9. bzoj 2820 YY的GCD(莫比乌斯反演)

    Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻× ...

  10. ●BZOJ 2820 YY的GCD

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题解: 莫比乌斯反演 先看看这个题:HDU 1695 GCD(本题简化版) HDU 1 ...

随机推荐

  1. web_config配置

    <configuration>    <system.web>      <compilation debug="true" targetFramew ...

  2. Struts的default.properties五个配置 一般利用按着配置文件的加载的顺序,后面文件和前面文件相同的配置,后面的会把前面的文件的值覆盖的原则 在struts.xml里面进行配置

    1 struts.i18n.encoding=UTF-8 配置编码 2 struts.action.extension=action,, 配置浏览器访问地址的后缀 3 struts.devMode = ...

  3. collection 多态 会自动转型为子类 继承多态需要显示转型

  4. BZOJ 2427 软件安装(强连通分量+树形背包)

    题意:现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现在有 ...

  5. Xmind8破解,以及相关的流程和破解包

    一.下载XMindCrack.jar文件:(传的貌似被屏蔽了:如果需要请留下邮箱,抽空会发给你) 百度云 ,里面破解文件,安装包都给了,但Xmind安装包不一定是最新的,有需求的可自行去官网下载 . ...

  6. 【入门向】使用 MetaHook Plus 绘制 HUD

    MetaHook Plus 是一个GoldSrc引擎(就是的Half-Life.CS1.6的引擎)的客户端插件平台,它可以加载我们自己开发的DLL插件. 首先你需要安装一个 Visual Studio ...

  7. (转)解决点击a标签返回页面顶部的问题

    本文转载至http://www.cnblogs.com/chenluomenggongzi/p/5950670.html 1 <!DOCTYPE html> 2 <html lang ...

  8. Keywords Search HDU - 2222(ac自动机板题。。)

    求一个字符串上有多少个匹配的单词 看着卿学姐的板子写的 指针形式: #include <iostream> #include <cstdio> #include <sst ...

  9. 【刷题】BZOJ 4199 [Noi2015]品酒大会

    Description 一年一度的"幻影阁夏日品酒大会"隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发"首席品酒家"和"首席猎手&quo ...

  10. javascript的解析顺序

    一.javascript的解析顺序 我们大家所理解的代码的执行顺序都是从上到下的,但是实际上确不是这样的.我们看一下下面的代码. 1 alert(a);2 var a = 1;如果执行顺序是从上到下的 ...