总结:

1. 第 36 行代码, 最好是按照 len 来遍历, 而不是下标

代码: 前序中序

#include <iostream>
#include <vector>
using namespace std; struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
}; class Solution {
public:
vector<int> preorder, inorder;
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
TreeNode * root = NULL;
if(preorder.size() == 0 || inorder.size() == 0)
return root; this->preorder = preorder;
this->inorder = inorder;
for(int i = 0; i < inorder.size(); i ++) {
if(inorder[i] == preorder[0]) {
root = new TreeNode(preorder[0]);
int len1 = i;
int len2 = inorder.size()-i-1;
root->left = buildParty(1,0, len1);
root->right = buildParty(len1+1, i+1, len2);
return root;
}
}
}
TreeNode *buildParty(const int &p, const int &i, const int &len) {
if(len <= 0)
return NULL;
for(int cursor = 0; cursor < len; cursor++) {
int pos = cursor+i; if(inorder[pos] == preorder[p]) {
TreeNode *root = new TreeNode(preorder[p]);
int len1 = cursor;
int len2 = len-cursor-1;
root->left = buildParty(p+1, i, len1);
root->right = buildParty(p+len1+1, pos+1, len2);
return root;
}
}
}
}; int main() {
TreeNode *node; int in1[10] = {1, 2, 3, 4, 5, 6};
int in2[10] = {3, 2, 4, 1, 5, 6}; Solution solution;
node = solution.buildTree(vector<int>(in1, in1+6), vector<int>(in2, in2+6));
return 0;
}

  

代码: 中序后序

#include <iostream>
#include <vector>
using namespace std; struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
}; class Solution {
public:
vector<int> inorder;
vector<int> postorder;
TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
TreeNode *root = NULL;
if(!inorder.size())
return root; this->inorder = inorder;
this->postorder = postorder; for(int ci = 0; ci < inorder.size(); ci++) {
if(inorder[ci] == postorder[postorder.size()-1]) {
root = new TreeNode(inorder[ci]);
int len1 = ci;
int len2 = inorder.size()-ci-1;
root->left = buildParty(0, postorder.size()-len2-2, len1);
root->right = buildParty(ci+1, postorder.size()-2, len2);
return root;
} }
}
TreeNode *buildParty(const int &i, const int &j, const int &len) {
if(!len)
return NULL; for(int ci = 0; ci < len; ci ++) {
int pos = i+ci;
if(postorder[j] == inorder[pos]) {
TreeNode *root = new TreeNode(inorder[pos]);
int len1 = ci;
int len2 = len-ci-1;
root->left = buildParty(i, j-len2-1, len1);
root->right = buildParty(i+ci+1, j-1, len2);
return root;
}
}
}
}; int main() {
TreeNode *node; int in1[10] = {3, 2, 4, 1, 5, 6};
int in2[10] = {3, 4, 2, 6, 5, 1}; Solution solution;
node = solution.buildTree(vector<int>(in1, in1+6), vector<int>(in2, in2+6));
return 0;
}

  

Leetcode: Construct Binary Tree from Preorder and Inorder Traversal, Construct Binary Tree from Inorder and Postorder Traversal的更多相关文章

  1. [LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  2. 【LeetCode OJ】Construct Binary Tree from Preorder and Inorder Traversal

    Problem Link: https://oj.leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-trave ...

  3. LeetCode:Construct Binary Tree from Inorder and Postorder Traversal,Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode:Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder trav ...

  4. LeetCode 105. Construct Binary Tree from Preorder and Inorder Traversal (用先序和中序树遍历来建立二叉树)

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  5. 【一天一道LeetCode】#105. Construct Binary Tree from Preorder and Inorder Traversal

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 来源:http ...

  6. (二叉树 递归) leetcode 105. Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  7. [LeetCode] 105. Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  8. 【LeetCode】105. Construct Binary Tree from Preorder and Inorder Traversal 从前序与中序遍历序列构造二叉树(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 日期 题目地址:https://leetcod ...

  9. Leetcode Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  10. Construct Binary Tree from Preorder and Inorder Traversal [LeetCode]

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

随机推荐

  1. ubuntu建立软ap共享无线网络

    建立ad-hoc模式共享网络 viewtopic.php?f=116&t=387194 有些android手机可能不支持ad-hoc模式,要第三方rom才行. 首先安装这些工具 代码: apt ...

  2. Linux命令-文件搜索命令:locate

    实际上是在分区表上搜索文件,比find命令速度更快 locate inittab 查找名称包含inittab的所有信息(快速搜索,实际上它是搜索linux资料库,区别于find在某一个磁盘分区或者某一 ...

  3. DevExpress实现根据行,列索引来获取RepositoryItem的方法

    /// <summary> /// 根据行,列索引来获取RepositoryItem /// </summary> /// <param name="view& ...

  4. ctags高级用法

    1.ctags -R 有个问题,成员变量没有包含在里面.所以自动完成对象的成员时没有提示.解决办法:$ctags -R --fields=+iaS --extra=+q *–fields=[+|-]f ...

  5. sim900GPRS模块ppp拨号上网

    --------------------------------------------- 主机操作系统:Centos 6.5 交叉编译器环境:arm-linux-gcc-4.5.4 开发板平台: F ...

  6. 让低版本IE也能正常运行HTML5+CSS3网站的3种解决方案

    现在我们可以选择浏览器非常多,所以浏览器的环境也是种类繁多,同一个浏览器也是包含各种不同的版本,不同的版本之间的渲染方法也存在差异,,它们支持的 HTML5.CSS3 特性恐怕也不尽相同.这种情况于是 ...

  7. vue2.0 实现click点击当前li,并动态添加class(这种方法不太喜欢)

    1,文件内容 ---- 使用v-for遍历数据 ---- @click="selectSort(item)"添加点击事件,并把每个obj=item传入 ---- v-show=&q ...

  8. 从零开始,跟我一起做jblog项目(二)Maven

    从零开始,跟我一起做jblog项目(一)引言 从零开始,跟我一起做jblog项目(二)Maven maven是一个项目管理工具,尤其适用于JAVA世界 在jblog的开发前期,还没有系统使用过mave ...

  9. SAP ECC6安装系列五:安装后 License 的处理

    原作者博客 http://www.cnblogs.com/Michael_z/ ======================================== 我发现我确实比较懒,先和各位说声抱歉了 ...

  10. linux 技巧:使用 screen 管理你的远程会话(短时间内同时开启多个会话)

    screen -S zyj 开启一个会话窗口 会进入这个页面 然后按  Ctrl+a,再按一下d  退出 然后输入 screen -r -d zyj 会从新进入这个页面 如果你的工作完成就直接输入 关 ...