总结:

1. 第 36 行代码, 最好是按照 len 来遍历, 而不是下标

代码: 前序中序

#include <iostream>
#include <vector>
using namespace std; struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
}; class Solution {
public:
vector<int> preorder, inorder;
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
TreeNode * root = NULL;
if(preorder.size() == 0 || inorder.size() == 0)
return root; this->preorder = preorder;
this->inorder = inorder;
for(int i = 0; i < inorder.size(); i ++) {
if(inorder[i] == preorder[0]) {
root = new TreeNode(preorder[0]);
int len1 = i;
int len2 = inorder.size()-i-1;
root->left = buildParty(1,0, len1);
root->right = buildParty(len1+1, i+1, len2);
return root;
}
}
}
TreeNode *buildParty(const int &p, const int &i, const int &len) {
if(len <= 0)
return NULL;
for(int cursor = 0; cursor < len; cursor++) {
int pos = cursor+i; if(inorder[pos] == preorder[p]) {
TreeNode *root = new TreeNode(preorder[p]);
int len1 = cursor;
int len2 = len-cursor-1;
root->left = buildParty(p+1, i, len1);
root->right = buildParty(p+len1+1, pos+1, len2);
return root;
}
}
}
}; int main() {
TreeNode *node; int in1[10] = {1, 2, 3, 4, 5, 6};
int in2[10] = {3, 2, 4, 1, 5, 6}; Solution solution;
node = solution.buildTree(vector<int>(in1, in1+6), vector<int>(in2, in2+6));
return 0;
}

  

代码: 中序后序

#include <iostream>
#include <vector>
using namespace std; struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
}; class Solution {
public:
vector<int> inorder;
vector<int> postorder;
TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
TreeNode *root = NULL;
if(!inorder.size())
return root; this->inorder = inorder;
this->postorder = postorder; for(int ci = 0; ci < inorder.size(); ci++) {
if(inorder[ci] == postorder[postorder.size()-1]) {
root = new TreeNode(inorder[ci]);
int len1 = ci;
int len2 = inorder.size()-ci-1;
root->left = buildParty(0, postorder.size()-len2-2, len1);
root->right = buildParty(ci+1, postorder.size()-2, len2);
return root;
} }
}
TreeNode *buildParty(const int &i, const int &j, const int &len) {
if(!len)
return NULL; for(int ci = 0; ci < len; ci ++) {
int pos = i+ci;
if(postorder[j] == inorder[pos]) {
TreeNode *root = new TreeNode(inorder[pos]);
int len1 = ci;
int len2 = len-ci-1;
root->left = buildParty(i, j-len2-1, len1);
root->right = buildParty(i+ci+1, j-1, len2);
return root;
}
}
}
}; int main() {
TreeNode *node; int in1[10] = {3, 2, 4, 1, 5, 6};
int in2[10] = {3, 4, 2, 6, 5, 1}; Solution solution;
node = solution.buildTree(vector<int>(in1, in1+6), vector<int>(in2, in2+6));
return 0;
}

  

Leetcode: Construct Binary Tree from Preorder and Inorder Traversal, Construct Binary Tree from Inorder and Postorder Traversal的更多相关文章

  1. [LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  2. 【LeetCode OJ】Construct Binary Tree from Preorder and Inorder Traversal

    Problem Link: https://oj.leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-trave ...

  3. LeetCode:Construct Binary Tree from Inorder and Postorder Traversal,Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode:Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder trav ...

  4. LeetCode 105. Construct Binary Tree from Preorder and Inorder Traversal (用先序和中序树遍历来建立二叉树)

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  5. 【一天一道LeetCode】#105. Construct Binary Tree from Preorder and Inorder Traversal

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 来源:http ...

  6. (二叉树 递归) leetcode 105. Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  7. [LeetCode] 105. Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  8. 【LeetCode】105. Construct Binary Tree from Preorder and Inorder Traversal 从前序与中序遍历序列构造二叉树(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 日期 题目地址:https://leetcod ...

  9. Leetcode Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  10. Construct Binary Tree from Preorder and Inorder Traversal [LeetCode]

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

随机推荐

  1. nginx配置用户认证

    location ~ .*admin\.php$ {             auth_basic "weifenglinux auth";             auth_ba ...

  2. Swift 与 Object-C 交互 (Swift版本为:1.2)

    这篇文章主要是介绍 Swift 与 Object-C 之间进行交互的代码,主要分为两个部分.一个是 Swift 项目调用 Object-C 的类,另一个是 Object-C 项目调用 Swift 类. ...

  3. NTP服务及时间同步(CentOS6.x)(转)

    今有一小型项目,完全自主弄,原来以为很简单的NTP服务,我给折腾了2个多小时才整撑头(以前都是运维搞,没太注意,所以这技术的东西,在简单都需要亲尝啊),这里记录为以后别再浪费时间. 目标环境,5台li ...

  4. 微信公众平台消息接口开发-封装weixin.class.php(转)

    一.封装weixin.class.php 由于微信公众平台的通信使用的是特定格式的XML数据,每次接受和回复都要去做一大堆的数据处理. 我们就考虑在这个基础上做一次封装,weixin.class.ph ...

  5. JAVA中==与equals的区别

    equals如果没有被重写的话,和==的作用是一样的,都是判断两个对象引用是否指向同一个地址.一般重写了equals()方法就表示比较它们“实际意义上相等”,比较的是内容,而不是引用地址.Java中S ...

  6. 通过Forms身份验证设置不同页面的访问权限

    使用Forms身份验证的时候,如果允许注册页面可以匿名用户访问,其他所有页面只允许注册用户访问,我们可以如下设置web.config文件来达到上述的效果: 1.在“system.web”节点下,添加登 ...

  7. 使用PsExec tool在Session 0下运行程序

    在Service程序中使用OutputDebugString输出log信息, 在当前用户直接运行DbgView.exe, log信息是不会输出到DbgView窗口的.原因是Server程序运行在Ses ...

  8. ORC 资料Mark

    1 OCR开源代码网址汇总  1.1 OCRE(OCR Easy), http://lem.eui.upm.es/ocre.html 1.2 Clara OCR,http://directory.fs ...

  9. DevExpress中GridControl列转义的实现方法

    /// <summary> /// CustomColumnDisplayText Helper /// </summary> /// <param name=" ...

  10. ecshop的数据库getRow、getAll、getOne区别

    ECShop没有使用一些开源的数据库操作类,比如adodb或者PEAR,而是封装了自己的实现.这样做的好处是实现非常轻量,大大减小了分发包的文件大小.另外,当网站需要做memcached缓存时,也可以 ...