Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K.

If there is no non-empty subarray with sum at least K, return -1.

Example 1:

Input: A = [1], K = 1
Output: 1

Example 2:

Input: A = [1,2], K = 4
Output: -1

Example 3:

Input: A = [2,-1,2], K = 3
Output: 3

Note:

  1. 1 <= A.length <= 50000
  2. -10 ^ 5 <= A[i] <= 10 ^ 5
  3. 1 <= K <= 10 ^ 9

思路

本来以为用dp来做,看了下答案,解法中并没有。使用的解法是滑动窗口,将问题重新定义为和A的前缀和有关,定义

P[i] = A[0] + A[1] + ... + A[i-1]

我们想要求的便是最小的 y-x,y>x 并且P[y] - P[x] >= K

Motivated by that equation, let opt(y) be the largest x such that P[x] <= P[y] - K. We need two key observations:

  • If x1 < x2 and P[x2] <= P[x1], then opt(y) can never be x1, as if P[x1] <= P[y] - K, then P[x2] <= P[x1] <= P[y] - K but y - x2 is smaller. This implies that our candidates x for opt(y) will have increasing values of P[x].

  • If opt(y1) = x, then we do not need to consider this x again. For if we find some y2 > y1 with opt(y2) = x, then it represents an answer of y2 - x which is worse (larger) than y1 - x.

opt(y)是使得当 P[x] <= P[y] - K 时 x 能取到的最大值。

1. 如果有 x1<x2 并且 P[x2]<=P[x1],那么opt(y)一定不是 x1,因为如果有P[x1] <= P[y] - K,那么 P[x2] <= P[x1] <= P[y] - K,但是 y - x2 is smaller。这表明对于opt(y)的候选x应该是在使P(x)递增的区间去找。要注意这里的P[x1]指的是从0到X1的数组元素之和,不是单单指一个x1位置上元素的值。

2. 如果opt(y1)=x, 那么不需要再次考虑x。因为如果我们找到某些y2>y1并且opt(y2)=x,那么这表明这个解答 y2-x 是比之前的解答 y1-x 是更坏的答案。

Calculate prefix sum B of list A.
B[j] - B[i] represents the sum of subarray A[i] ~ A[j-1]
Deque d will keep indexes of increasing B[i].
For every B[i], we will compare B[i] - B[d[0]] with K.

    public int shortestSubarray(int[] A, int K) {
int N = A.length, res = N + 1;
int[] B = new int[N + 1];
   // 下面利用数组A重新构造了数组B,满足B[i+1]-B[j]=A[i]+A[i-1].....+A[j]
for (int i = 0; i < N; i++) B[i + 1] = B[i] + A[i];
Deque<Integer> d = new ArrayDeque<>();
for (int i = 0; i < N + 1; i++) {  
while (d.size() > 0 && B[i] - B[d.getFirst()] >= K)
res = Math.min(res, i - d.pollFirst()); // 双端队列存的是索引
while (d.size() > 0 && B[i] <= B[d.getLast()]) d.pollLast(); // Deque d keep indexes of increasing B[i]
d.addLast(i);
}
return res <= N ? res : -1;
}

上面的出入队列顺序是这样的:首先对于每个索引i,对应的是B[i],将这个索引作为y位置来考虑,因为双端队列保持的索引是的B[i]是递增的,为了从最大处逼近K,我们从队头依次取索引出来计算:

B[i] - B[d.getFirst()]

如果比K大,那么则要找这其中距离索引i最近的那一个:

res = Math.min(res, i - d.pollFirst());

然后是队列要keep indexes of increasing B[i],索引判断当前的B[i]是否大于队列尾部的索引处的

B[i] <= B[d.getLast()

如果不能构成递增,根据之前的分析,当前y所在的位置i的最优解opt(y)一定不会是在前面递增的部分取,所以队列要从后往前一个个弹出队尾直至能和B[i]构成递增序列。

LeetCode862. Shortest Subarray with Sum at Least K的更多相关文章

  1. 862. Shortest Subarray with Sum at Least K

    Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...

  2. [Swift]LeetCode862. 和至少为 K 的最短子数组 | Shortest Subarray with Sum at Least K

    Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...

  3. [LeetCode] 862. Shortest Subarray with Sum at Least K 和至少为K的最短子数组

    Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...

  4. 【LeetCode】862. Shortest Subarray with Sum at Least K 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 队列 日期 题目地址:https://leetcod ...

  5. leetcode 862 shorest subarray with sum at least K

    https://leetcode.com/problems/shortest-subarray-with-sum-at-least-k/ 首先回顾一下求max子数组的值的方法是:记录一个前缀min值, ...

  6. array / matrix subarray/submatrix sum

    Maximal Subarray Sum : O(n) scan-and-update dynamic programming, https://en.wikipedia.org/wiki/Maxim ...

  7. 【LeetCode】1099. Two Sum Less Than K 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力求解 日期 题目地址:https://leetco ...

  8. LeetCode 1099. Two Sum Less Than K

    原题链接在这里:https://leetcode.com/problems/two-sum-less-than-k/ 题目: Given an array A of integers and inte ...

  9. [LeetCode] Partition to K Equal Sum Subsets 分割K个等和的子集

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

随机推荐

  1. CVE-2017-16995 Ubuntu16.04本地提权漏洞复现

    0x01 前言 该漏洞由Google project zero发现.据悉,该漏洞存在于带有 eBPF bpf(2)系统(CONFIG_BPF_SYSCALL)编译支持的Linux内核中,是一个内存任意 ...

  2. windows内核提权

    Windows by default are vulnerable to several vulnerabilities that could allow an attacker to execute ...

  3. 《Linux内核设计与实现》第5章读书笔记

    第五章 系统调用 一.系统调用概述 系统调用在Linux中称为syscall,返回的值是long型变量:如果出错,C库会将错误代码写入errno全局变量(通过调用perror()函数可以把该变量翻译成 ...

  4. winform设计一个登录界面和修改密码的界面-自动切换窗体(问题[已解] 望一起讨论)(技术改变世界-cnblog)

    http://www.cnblogs.com/IAmBetter/archive/2012/01/14/2322156.html winform设计一个登录界面和修改密码的界面-自动切换窗体(问题[已 ...

  5. [JLOI2014] 松鼠的新家 (lca/树上差分)

    [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在 ...

  6. springboot集成Guava缓存

    很久没有写博客了,这段时间一直忙于看论文,写论文,简直头大,感觉还是做项目比较舒服,呵呵,闲话不多说,今天学习了下Guava缓存,这跟Redis类似的,但是适用的场景不一样,学习下吧.今天我们主要是s ...

  7. 9.Android UiAutomator正则表达式的使用

    一.正则表达式元字符: 1.一些常用元字符: 元字符 描述 . 表示任意一个字符 \s 空格字符(空格键.tab.换行.换页.回车) \S 非空字符串([^\s]) \d 一个数字(相当于[0-9]中 ...

  8. swift4.0中http连接(据于xcode9.3 URLSession)

    NSURLSession是NSURLConnection的替代者,在2013年苹果全球开发者大会上(WWDC2013)随iOS7一起发布的,是对NSURLConnection进行了重构优化后的新的网络 ...

  9. (转)JAVA 十六个常用工具类

    一. org.apache.commons.io.IOUtils closeQuietly 关闭一个IO流.socket.或者selector且不抛出异常.通常放在finally块 toString ...

  10. libuv移植到ios

    libuv官网只提供了os x的编译方法,没有IOS的.既然os x和ios的系统内核差不多,并且编译工具都是xcode,那我们只要重新指定cpu架构,就可以编译出ios版的了. 1.安装python ...