bzoj 1004 组合
代码:
//根据Burnside定理:有m个置换k钟颜色,所有本质不同的染色方案数就是每种置换的不变元素的个数的平均数。所谓不变元素就是一种染色方案
//经过置换变换后和之前一样。所以现在就是要求不变元素的个数,要想变换后和之前一样那么改置换的循环节中一定是同一种颜色,所以现在就
//是要求每个置换的循环节然后求出每个循环节染同一种颜色的方案数。因为只有3种颜色可以用三维的01背包求方案数。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int sr,sb,sg,n,m,p,a[][];
ll f[][][];
ll solve(int x)
{
bool vis[];
int b[],sum=;
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++){
if(!vis[a[x][i]]){
b[++sum]=;
vis[a[x][i]]=;
int y=a[x][i];
while(!vis[a[x][y]]){
b[sum]++;
vis[a[x][y]]=;
y=a[x][y];
}
}
}
memset(f,,sizeof(f));
f[][][]=;
for(int h=;h<=sum;h++)
for(int i=sr;i>=;i--){
for(int j=sb;j>=;j--){
for(int k=sg;k>=;k--){
if(i>=b[h]) f[i][j][k]=(f[i][j][k]+f[i-b[h]][j][k])%p;
if(j>=b[h]) f[i][j][k]=(f[i][j][k]+f[i][j-b[h]][k])%p;
if(k>=b[h]) f[i][j][k]=(f[i][j][k]+f[i][j][k-b[h]])%p;
}
}
}
return f[sr][sb][sg];
}
ll pow_mod(int a,int b)
{
if(b==) return ;
ll x=pow_mod(a,b/);
x=x*x%p;
if(b&) x=x*a%p;
return x;
}
int main()
{
scanf("%d%d%d%d%d",&sr,&sb,&sg,&m,&p);
n=sr+sb+sg;
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)
scanf("%d",&a[i][j]);
m++;
for(int j=;j<=n;j++) a[m][j]=j;
ll ans=;
for(int i=;i<=m;i++)
ans=(ans+solve(i))%p;
ans=(ans*pow_mod(m,p-))%p;
printf("%lld\n",ans);
return ;
}
bzoj 1004 组合的更多相关文章
- [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】
题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...
- bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...
- bzoj 1004 Cards 组合计数
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...
- bzoj 1004 Cards
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...
- BZOJ 1004: [HNOI2008]Cards
Description 给你一个序列,和m种可以使用多次的置换,用3种颜色染色,求方案数%p. Sol Burnside定理+背包. Burnside定理 \(N(G,\mathbb{C})=\fra ...
- [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...
- BZOJ 1004 Cards(Burnside引理+DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换 ...
- bzoj 1004 1004: [HNOI2008]Cards burnside定理
1004: [HNOI2008]Cards Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1668 Solved: 978[Submit][Stat ...
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
随机推荐
- 福利,一张图看懂IT售前工程师修炼之道
职场中的新人如何自我定位? 如何深刻理解IT售前这个职位? 如何从IT售前菜鸟成长为IT售前专家? 推荐这本书<IT售前工程师修炼之道> 本书精华内容 售前的重要性 售前要有逻辑能力 售前 ...
- H2O Driverless AI
H2O Driverless AI(H2O无驱动人工智能平台)是一个自动化的机器学习平台,它给你一个有着丰富经验的“数据科学家之盒”来完成你的算法. 使AI技术得到大规模应用 各地的企业都意识到人工智 ...
- "Hello World!"团队第十次会议
Scrum会议 今天是我们"Hello World!"团队第十次召开会议,博客内容是: 1.会议时间 2.会议成员 3.会议地点 4.会议内容 5.todo list 6.会议照片 ...
- 基础系列(6)—— C#类和对象
一.类介绍 类(class)是C#类型中最基础的类型.类是一个数据结构,将状态(字段)和行为(方法和其他函数成员)组合在一个单元中.类提供了用于动态创建类实例的定义,也就是对象(objec ...
- OC创建对象并访问成员变量
1.创建一个对象 Car *car =[Car new] 只要用new操作符定义的实体,就会在堆内存中开辟一个新空间 [Car new]在内存中 干了三件事 1)在堆中开辟一段存储空间 2)初始化成员 ...
- 0429团队项目-Scrum团队成立
Scrum团队成立 团队名称:开拓者 团队目标:努力让每一个小伙伴在学会走路的基础上学会跑. 团队口号:我们要的只是这片天而已. 团队照:正面照+背影照(那就是为什么组名叫开拓者) 5.2 角色分配 ...
- JavaScript数组去重的四种方法
今天,洗澡的想一个有趣的问题,使用js给数组去重,我想了四种方法,虽然今天的任务没有完成,5555: 不多说,po代码: //方法一:简单循环去重 Array.prototype.unique1 ...
- CKeditor、CKFinder的安装配置
CKEditor是不集成文件上传与管理功能的,文件上传管理功能被集成在CKFinder中,这是一个收费的商业软件. 如需要文件上传与管理功能建议使用FCKeditor或者手动破解CKFinder. 下 ...
- 【Linux 命令】- more和less
more命令 more功能类似 cat ,cat命令是整个文件的内容从上到下显示在屏幕上. more会以一页一页的显示方便使用者逐页阅读,而最基本的指令就是按空白键(space)就往下一页显示,按 b ...
- SQL SERVER SA密码忘记,windows集成身份验证都登录不了不怎么办
有时候SQL SERVER 的SA强密码策略真的很烦人,不同的系统密码策略又不一样,导致经常会忘记密码,这不,这回我本机的SQL SERVER很久不用了,彻底忘了密码是什么.查了一下资料还是找到了解决 ...