3747: [POI2015]Kinoman

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 830  Solved: 338

Description

共有m部电影,编号为1~m,第i部电影的好看值为w[i]。
在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部。
你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影。如果同一部电影你观看多于一次,你会感到无聊,于是无法获得这部电影的好看值。所以你希望最大化观看且仅观看过一次的电影的好看值的总和。

Input

第一行两个整数n,m(1<=m<=n<=1000000)。
第二行包含n个整数f[1],f[2],…,f[n](1<=f[i]<=m)。
第三行包含m个整数w[1],w[2],…,w[m](1<=w[j]<=1000000)。

Output

输出观看且仅观看过一次的电影的好看值的总和的最大值。

Sample Input

9 4
2 3 1 1 4 1 2 4 1
5 3 6 6

Sample Output

15
样例解释:
观看第2,3,4,5,6,7天内放映的电影,其中看且仅看过一次的电影的编号为2,3,4。

HINT

Source

【分析】

  这题应该挺经典。?

  就是先弄一个next,然后每次求以i结尾的最大值。

  i的值为w,next[i]的值为-w,更前面的next的值为0,线段树维护这个,(好像树状数组也是可以的),然后就好了。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1000010
#define LL long long // int mymax(int x,int y) {return x>y?x:y;}
LL mymax(LL x,LL y) {return x>y?x:y;} int a[Maxn],w[Maxn],f[Maxn],ft[Maxn],nt[Maxn]; struct node
{
int l,r,lc,rc;
LL mx,lazy;
}tr[Maxn*]; int tot=;
int build(int l,int r)
{
int x=++tot;
tr[x].l=l;tr[x].r=r;
tr[x].lazy=tr[x].mx=;
if(l<r)
{
int mid=(l+r)>>;
tr[x].lc=build(l,mid);
tr[x].rc=build(mid+,r);
}
else tr[x].lc=tr[x].rc=;
return x;
} void upd(int x)
{
tr[x].mx+=tr[x].lazy;
if(tr[x].lazy==||tr[x].l==tr[x].r) {tr[x].lazy=;return;}
int lc=tr[x].lc,rc=tr[x].rc;
tr[lc].lazy+=tr[x].lazy;
tr[rc].lazy+=tr[x].lazy;
tr[x].lazy=;
} void change(int x,int l,int r,int y)
{
if(tr[x].l==l&&tr[x].r==r)
{
tr[x].lazy+=y;
upd(x);
return;
}
upd(x);
int mid=(tr[x].l+tr[x].r)>>;
if(r<=mid) change(tr[x].lc,l,r,y);
else if(l>mid) change(tr[x].rc,l,r,y);
else
{
change(tr[x].lc,l,mid,y);
change(tr[x].rc,mid+,r,y);
}
upd(tr[x].lc);upd(tr[x].rc);
tr[x].mx=mymax(tr[tr[x].lc].mx,tr[tr[x].rc].mx);
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=m;i++) scanf("%d",&w[i]);
memset(ft,,sizeof(ft));
for(int i=;i<=n;i++)
{
nt[i]=ft[a[i]];
ft[a[i]]=i;
}
build(,n);
LL maxx=;
for(int i=;i<=n;i++)
{
change(,,i,w[a[i]]);
if(nt[i]) change(,,nt[i],-*w[a[i]]);
if(nt[nt[i]]) change(,,nt[nt[i]],w[a[i]]);
maxx=mymax(maxx,tr[].mx);
}
printf("%lld\n",maxx);
return ;
}

2017-04-08 10:54:12

【BZOJ 3747】 3747: [POI2015]Kinoman (线段树)的更多相关文章

  1. Bzoj 3747: [POI2015]Kinoman 线段树

    3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 222[Submit][Stat ...

  2. 3747: [POI2015]Kinoman|线段树

    枚举左区间线段树维护最大值 #include<algorithm> #include<iostream> #include<cstdlib> #include< ...

  3. 【BZOJ3747】[POI2015]Kinoman 线段树

    [BZOJ3747][POI2015]Kinoman Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第 ...

  4. 【bzoj3747】[POI2015]Kinoman 线段树区间合并

    题目描述 一个长度为n的序列,每个数为1~m之一.求一段连续子序列,使得其中之出现过一次的数对应的价值之和最大. 输入 第一行两个整数n,m(1<=m<=n<=1000000). 第 ...

  5. 【bzoj3747】[POI2015]Kinoman - 线段树(经典)

    Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l< ...

  6. BZOJ3747:[POI2015]Kinoman(线段树)

    Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l< ...

  7. BZOJ_3747_[POI2015]Kinoman_线段树

    BZOJ_3747_[POI2015]Kinoman_线段树 Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放 ...

  8. BZOJ_4383_[POI2015]Pustynia_线段树优化建图+拓扑排序

    BZOJ_4383_[POI2015]Pustynia_线段树优化建图+拓扑排序 Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息 ...

  9. [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)

    [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...

  10. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

随机推荐

  1. spring boot 使用logback日志系统的详细说明

    springboot按照profile进行打印日志 log4j logback slf4j区别? 首先谈到日志,我们可能听过log4j logback slf4j这三个名词,那么它们之间的关系是怎么样 ...

  2. 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环

    [题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...

  3. 【BZOJ】2099: [Usaco2010 Dec]Letter 恐吓信

    [题意]给定长度为n和m的两个字符串S和T,要求在字符串S中取出若干段拼成T(可重复取),求最小段数,n,m<=50000. [算法]后缀自动机 || 后缀数组 [题解]对串S建SAM,然后在上 ...

  4. Verilog笔记.3.有限状态机

    有限状态机有限状态机是由寄存器组和组合逻辑构成的硬件时序电路,其状态(即由寄存器组的1和0的组合状态所构成的有限个状态)只可能在同一时钟跳变沿的情况下才能从一个状态转向另一个状态,究竟转向哪一状态还是 ...

  5. php简单文件管理器——php经典实例

    <html> <head> <title>文件管理</title> <meta charset='utf-8' /> </head&g ...

  6. Perl6 必应抓取(1):测试版代码

    一个相当丑漏的代码, 以后有时间再优化了. 默认所有查找都是15页, 如果结果没有15页这么多估计会有重复.速度还是很快的. sub MAIN() { my $fp = open 'bin_resul ...

  7. [Leetcode] Sum 系列

    Sum 系列题解 Two Sum题解 题目来源:https://leetcode.com/problems/two-sum/description/ Description Given an arra ...

  8. Photon3Unity3D.dll 解析四——LitePeer

    LitePeer 玩家 Connect      连接服务器 Disconnect  断开与服务器的连接 OpJoin        进入游戏 OpLeave     离开游戏,但仍与服务器保持连接 ...

  9. UTF-8和GB2312互转的最简单快捷的方法

    一.如果你想把utf-8转为GB2312 1.用记事本打开源码,把<meta http-equiv="Content-Type" content="text/htm ...

  10. golang基础之一

    一.第一个go程序 package main import ( "fmt" ) func main(){ fmt.Println("hello world") ...