In 0th day, there are n-1 people and 1 bloodsucker. Every day, two and only two of them meet. Nothing will happen if they are of the same species, that is, a people meets a people or a bloodsucker meets a bloodsucker. Otherwise, people may be transformed into bloodsucker with probability p. Sooner or later(D days), all people will be turned into bloodsucker. Calculate the mathematical expectation of D.

Input

The number of test cases (TT ≤ 100) is given in the first line of the input. Each case consists of an integer n and a float number p (1 ≤ n < 100000, 0 < p ≤ 1, accurate to 3 digits after decimal point), separated by spaces.

Output

For each case, you should output the expectation(3 digits after the decimal point) in a single line.

Sample Input

1
2 1

Sample Output

1.000

题意:

开始有一个吸血鬼,n-1个平民百姓。每天一个百姓被感染的概率可求,问每个人都变成吸血鬼的天数期望。

思路:

一般期望题逆推,设dp[i]是目前已经有i个吸血鬼,所有人变成吸血鬼的期望。则dp[n]=0;答案是dp[1]。每一个dp[i]的感染概率可求是p[]=2.0*(n-i)*i/(n-1)/n*p;

则可得递推公式: dp[i] = (dp[i+1]*p[]+1)/p[];

#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
double dp[],p,tmp;
int main()
{
int T,n,i;
scanf("%d",&T);
while(T--){
scanf("%d%lf",&n,&p);
dp[n]=;
for(i=n-;i>=;i--) {
tmp=2.0*(n-i)*i/(n-)/n*p;
dp[i] = (dp[i+]*tmp+)/tmp;
}
printf("%.3lf\n",dp[]);
}
return ;
}

ZOJ3551Bloodsucker (数学期望)的更多相关文章

  1. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  2. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  3. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  4. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

  5. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  6. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  7. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  8. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  9. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

  10. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

随机推荐

  1. java高级特性(4)--枚举

    枚举(enum),是指一个经过排序的.被打包成一个单一实体的项列表.一个枚举的实例可以使用枚举项列表中任意单一项的值.枚举在各个语言当中都有着广泛的应用,通常用来表示诸如颜色.方式.类别.状态等等数目 ...

  2. codeforces781D Axel and Marston in Bitland

    题目链接:codeforces781D 正解:$bitset$+状压$DP$ 解题报告: 考虑用$f[t][0.1][i][j]$表示从$i$出发走了$2^t$步之后走到了$j$,且第一步是走的$0$ ...

  3. mysql数据库优化课程---14、常用的sql技巧

    mysql数据库优化课程---14.常用的sql技巧 一.总结 一句话总结:其实就是sql中那些函数的使用 1.mysql中函数如何使用? 选择字段 其实就是作用域select的选择字段 3.转大写: ...

  4. mongodb复制集开启安全认证

    之前我有一篇博客写的是“node.js通过权限验证连接MongoDB”,这篇博客上提到如何在启动文件中通过配置auth参数来开启权限认证,但这种认证方式只适合单机节点,当我们使用复制集时应该怎么开启权 ...

  5. spring mvc: Hibernate验证器(字段不能为空,在1-150自己)

    spring mvc: Hibernate验证器(字段不能为空,在1-150自己) 准备: 下载Hibernate Validator库 - Hibernate Validator.解压缩hibern ...

  6. angular directive restrict 的用法

    E 表示该指令是一个element; A 表示该指令是attribute; C 表示该指令是class; M 表示该指令是注视 实例如下: 原帖:www.thinkster.io/angularjs/ ...

  7. ionic+cordova 学习开发App(一)

    一.项目所需环境 (一)jdk 1.jdk的安装,必须同时包含Java 和javac [一般安装包中都包含有,可以确定下] (二)node.js 和NPM 1.大多插件和辅助工具都运行在NPm平台上. ...

  8. IDEA运行时Information:java: Errors occurred while compiling module!

    在网上找了资源 说看一下项目JDK,字符编码UTF-8,但是都不很实用,突然发现: IDEA的右下角改变字符编码的按钮,先改成GBK然后再改成UTF-8,然后就OK了. 原因:导入开源的项目的时候,你 ...

  9. 13.LockSupport工具

    1. LockSupport简介 在之前介绍AQS的底层实现,已经在介绍java中的Lock时,比如ReentrantLock,ReentReadWriteLocks,已经在介绍线程间等待/通知机制使 ...

  10. @Primary-在spring中常被忽视的注解

    在spring 中使用注解,常使用@Autowired, 默认是根据类型Type来自动注入的.但有些特殊情况,对同一个接口,可能会有几种不同的实现类,而默认只会采取其中一种的情况下 @Primary  ...