这几天因为要对yolo进行重新训练,需要用到imagenet pretrain,由于网络是自己设计的网络,所以需要先在darknet上训练imagenet,由于网上都没有相关的说明教程,特别是图片路径是怎么和类别标签对应起来的,让我百思不得其解,所以最后就自己去查看了darknet的源码,发现原来作者是用了字符串匹配,来查找图片路径字符串中是否有与类别标签字符串匹配的子字符串,以此判断该类别标签的。

1、darknet对于图片分类训练、验证命令为:

./darknet classifier train cfg/imagenet1k.data cfg/extraction.cfg extraction.weights

./darknet classifier valid cfg/imagenet1k.data cfg/extraction.cfg extraction.weights

2、数据格式:数据路径配置主要读取自:cfg/imagenet1k.data

classes=1000
train  = imagenet/darknet_train.txt
valid  = imagenet/darknet_val.txt
backup = backup/
labels = data/imagenet.labels.list
names  = data/imagenet.shortnames.list
top=5

darknet_train.txt,darknet_val.txt的训练格式只有图片路径,比如:

/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10026.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10027.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10029.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10040.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10042.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10043.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10048.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10066.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10074.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_1009.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10095.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10108.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10110.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10120.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10124.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10150.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10159.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10162.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10183.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10194.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10211.JPEG
/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/n01440764/n01440764_10218.JPEG

那么darknet是怎么知道每一行图片路径,对应的类别标签的。其主要是从:

data/imagenet.labels.list

读取标签字符串,然后用类别标签字符串,匹配上面每一行的图片路径,查找是否有子字符串,以此确定类别标签,所以训练的时候,一定要确保图片路径包含了类别标签,比如:n01440764等就是类别标签。

3、由于imagenet的val图片是放在一起的,路径不包含标签,所以需要读取val标签.xml文件,把val的图片根据标签,重新存过一遍,放在对应的类别标签文件:

#coding=utf-8
import os
import shutil
from BeautifulSoup import BeautifulSoup
#train.txt可通过运行脚本caffe/data/get_ilsvrc_aux.sh下载获得
'''with open("../imagenet/train.txt") as f:
    with open("../imagenet/darknet_train.txt",'w') as w:
        for l in f.readlines():
            w.writelines('/home/research/disk1/imagenet/ILSVRC2015/Data/CLS-LOC/train/'+l.split()[0]+'\n')'''

#val
dataroot='/home/research/disk1/imagenet/ILSVRC2015/'
vallabel=dataroot+'Annotations/CLS-LOC/val'
valimage=dataroot+'Data/CLS-LOC/val'
with open("../imagenet/darknet_val.txt",'w') as w:
    for l in os.listdir(vallabel):

        xml = ""
        with open(os.path.join(vallabel,l)) as f:
            xml = f.readlines()
        xml = ''.join([line.strip('\t') for line in xml])

        label=BeautifulSoup(xml).find('name').string
        filename=BeautifulSoup(xml).find('filename').string+'.JPEG'

        saveroot='../temp/'+label
        if os.path.exists(saveroot) is False:
            os.makedirs(saveroot)
        shutil.copy(os.path.join(valimage,filename),os.path.join(saveroot,filename))
        w.writelines('/home/research/disk1/compress_yolo/temp/' + filename+ '\n')

深度学习(六十八)darknet使用的更多相关文章

  1. B站动手学深度学习第十八课:seq2seq(编码器和解码器)和注意力机制

    from mxnet import nd h_forward = nd.array([1,2]) h_backward = nd.array([3,4]) h_bi = nd.concat(h_for ...

  2. python3.4学习笔记(十八) pycharm 安装使用、注册码、显示行号和字体大小等常用设置

    python3.4学习笔记(十八) pycharm 安装使用.注册码.显示行号和字体大小等常用设置Download JetBrains Python IDE :: PyCharmhttp://www. ...

  3. 《剑指Offer》题六十一~题六十八

    六十一.扑克牌中的顺子 题目:从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2~10为数字本身,A为1,J为11,Q为12,K为13,而大.小王可以看成任意数字. 六十二.圆圈中 ...

  4. Tensorflow深度学习之十二:基础图像处理之二

    Tensorflow深度学习之十二:基础图像处理之二 from:https://blog.csdn.net/davincil/article/details/76598474   首先放出原始图像: ...

  5. 学习笔记:CentOS7学习之十八:Linux系统启动原理及故障排除

    目录 学习笔记:CentOS7学习之十八:Linux系统启动原理及故障排除 18.1 centos6系统启动过程及相关配置文件 18.1.1 centos6系统启动过程 18.1.2 centos6启 ...

  6. 《手把手教你》系列技巧篇(六十八)-java+ selenium自动化测试 - 读写excel文件 - 下篇(详细教程)

    1.简介 今天继续操作Excle,小伙伴或者童鞋们是不是觉得宏哥会介绍第三种工具操作Excle,今天不介绍了,有两种就够用了,其实一种就够用了,今天主要是来介绍如何使用不同的数据类型读取Excel文件 ...

  7. Deep learning深度学习的十大开源框架

    Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索引擎都在使用 ...

  8. (C/C++学习笔记) 十八. 继承和多态

    十八. 继承和多态 ● 继承的概念 继承(inheritance): 以旧类为基础创建新类, 新类包含了旧类的数据成员和成员函数(除了构造函数和析构函数), 并且可以派生类中定义新成员. 形式: cl ...

  9. 深度学习(十) GoogleNet

    GoogLeNet Incepetion V1 这是GoogLeNet的最早版本,出现在2014年的<Going deeper with convolutions>.之所以名为“GoogL ...

  10. arXiv 2015深度学习年度十大论文

    由康奈尔大学运营维护着的arXiv网站,是一个在学术论文还未被出版时就将之向所有人开放的地方.这里汇聚了无数科学领域中最前沿的研究,机器学习也包括在内.它反映了学术界当前的整体趋势,我们看到,近来发布 ...

随机推荐

  1. 20145335郝昊《Java程序设计》课程总结

    20145335郝昊<Java程序设计>课程总结 1.读书笔记汇总 第一周学习总结:http://www.cnblogs.com/20145335hh/p/5244638.html 第二周 ...

  2. Java基础东西(按位操作运算)

    http://aokunsang.iteye.com/blog/615658 前奏:   昨天一哥们问我Java位移你会吗,我说不会,想想位移这么麻烦,一般有位移的Java代码一律不看,有几个人会啊, ...

  3. Java 面试题基础概念收集

    问题:如果main方法被声明为private会怎样? 答案:能正常编译,但运行的时候会提示”main方法不是public的”. 问题:Java里的传引用和传值的区别是什么? 答案:传引用是指传递的是地 ...

  4. 【GAN】GAN的原理及推导

    把GAN的论文看完了, 也确实蛮厉害的懒得写笔记了,转一些较好的笔记,前面先贴一些 原论文里推理部分,进行备忘. GAN的解释 算法流程 GAN的理论推理 转自:https://zhuanlan.zh ...

  5. Berkeley parser使用方法

    1. 简介  Berkeley Parser 是加州大学伯克利分校 NLP 实验室开发的一种基于概率上下文无关文法(PCFG)的成分句法分析器,支持英语,汉语,德语等多个语种,它具有较高的句法分析性能 ...

  6. Android -- ContentProvider, 读取和保存系统 联系人

    1. 示例代码 需要的读写联系人的权限 <uses-permission android:name="android.permission.WRITE_CONTACTS"/& ...

  7. Normalize.css与CSS reset区别

    Normalize.css 只是一个很小的CSS文件,但它在默认的HTML元素样式上提供了跨浏览器的高度一致性.相比于传统的CSS reset,Normalize.css是一种现代的.为HTML5准备 ...

  8. HTML5如何做横屏适配

    在移动端中我们经常碰到横屏竖屏的问题,那么我们应该如何去判断或者针对横屏.竖屏来写不同的代码呢. 首先在head中加入如下代码: 1 <meta name="viewport" ...

  9. Linux查看和剔除当前登录用户

    Linux查看和剔除当前登录用户 如何在linux下查看当前登录的用户,并且踢掉你认为应该踢掉的用户? 看了网络中的一些例子.在这里总结一下.主要用到的命令有,w,who,ps,kill,pkill ...

  10. double int char long 等数据类型所占的字节数-----待整理