1.文件
5.0,3.5,1.6,0.6,apple
5.1,3.8,1.9,0.4,apple
4.8,3.0,1.4,0.3,apple
5.1,3.8,1.6,0.2,apple
4.6,3.2,1.4,0.2,apple
5.3,3.7,1.5,0.2,apple
5.0,3.3,1.4,0.2,apple
7.0,3.2,4.7,1.4,orange
6.4,3.2,4.5,1.5,orange
6.9,3.1,4.9,1.5,orange
5.5,2.3,4.0,1.3,orange
6.5,2.8,4.6,1.5,orange
5.7,2.8,4.5,1.3,orange
6.3,3.3,4.7,1.6,orange
7.3,2.9,6.3,1.8,banana
6.7,2.5,5.8,1.8,banana
7.2,3.6,6.1,2.5,banana
6.5,3.2,5.1,2.0,banana
6.4,2.7,5.3,1.9,banana
6.8,3.0,5.5,2.1,banana
5.7,2.5,5.0,2.0,banana
5.8,2.8,5.1,2.4,banana

2 代码

# -*- coding: UTF-8 -*-
import math
import csv
import random
import operator '''
@author:hunter
@time:2017.03.31
''' class KNearestNeighbor(object):
def __init__(self):
pass def loadDataset(self,filename, split, trainingSet, testSet): # 加载数据集 split以某个值为界限分类train和test
with open(filename, 'r') as csvfile:
lines = csv.reader(csvfile) #读取所有的行
dataset = list(lines) #转化成列表
for x in range(len(dataset)-1):
for y in range(4):
dataset[x][y] = float(dataset[x][y])
if random.random() < split: # 将所有数据加载到train和test中 生成0和1的随机浮点数
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x]) def calculateDistance(self,testdata, traindata, length): # 计算距离
distance = 0 # length表示维度 数据共有几维
for x in range(length):
distance += pow((testdata[x]-traindata[x]), 2)
return math.sqrt(distance) def getNeighbors(self,trainingSet, testInstance, k): # 返回最近的k个边距
distances = []
length = len(testInstance)-1
for x in range(len(trainingSet)): #对训练集的每一个数计算其到测试集的实际距离
dist = self.calculateDistance(testInstance, trainingSet[x], length)
print('训练集:{}-距离:{}'.format(trainingSet[x], dist))
distances.append((trainingSet[x], dist))
distances.sort(key=operator.itemgetter(1)) # 把距离从小到大排列
neighbors = []
for x in range(k): #排序完成后取前k个距离
neighbors.append(distances[x][0])
print(neighbors)
return neighbors def getResponse(self,neighbors): # 根据少数服从多数,决定归类到哪一类
classVotes = {}
for x in range(len(neighbors)):
response = neighbors[x][-1] # 统计每一个分类的多少
if response in classVotes:
classVotes[response] += 1
else:
classVotes[response] = 1 # 初始值为1
print(classVotes.items())
sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True) #reverse按降序的方式排列
return sortedVotes[0][0] def getAccuracy(self,testSet, predictions): # 准确率计算
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]: #predictions是预测的和testset实际的比对
correct += 1
print('共有{}个预测正确,共有{}个测试数据'.format(correct,len(testSet)))
return (correct/float(len(testSet)))*100.0 def Run(self):
trainingSet = []
testSet = []
split = 0.75
self.loadDataset(r'testdata.txt', split, trainingSet, testSet) #数据划分
print('Train set: ' + str(len(trainingSet)))
print('Test set: ' + str(len(testSet)))
#generate predictions
predictions = []
k = 3 # 取最近的3个数据
# correct = []
for x in range(len(testSet)): # 对所有的测试集进行测试
neighbors = self.getNeighbors(trainingSet, testSet[x], k) #找到3个最近的邻居
result = self.getResponse(neighbors) # 找这3个邻居归类到哪一类
predictions.append(result)
# print('predictions: ' + repr(predictions)) 返回一个它在python中的描述
# print('>predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
# print(correct)
accuracy = self.getAccuracy(testSet,predictions)
print('Accuracy: ' + repr(accuracy) + '%') if __name__ == '__main__':
a = KNearestNeighbor()
a.Run()

  

001 KNN分类 最邻近算法的更多相关文章

  1. Python实现kNN(k邻近算法)

    Python实现kNN(k邻近算法) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>op ...

  2. 在Ignite中使用k-最近邻(k-NN)分类算法

    在本系列前面的文章中,简单介绍了一下Ignite的线性回归算法,下面会尝试另一个机器学习算法,即k-最近邻(k-NN)分类.该算法基于对象k个最近邻中最常见的类来对对象进行分类,可用于确定类成员的关系 ...

  3. [机器学习] ——KNN K-最邻近算法

    KNN分类算法,是理论上比较成熟的方法,也是最简单的机器学习算法之一. 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别 ...

  4. knn分类算法学习

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  5. k邻近算法(KNN)实例

    一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实 ...

  6. 最邻近算法(KNN)识别数字验证码

    应用场景   对于简单的数字型验证码的自动识别.前期已经完成的工作是通过切割将验证码图片切割成一个一个的单个数字的图片,并按照对应的数字表征类别进行分类(即哪些图片表示数字7,哪些表示8),将各种数字 ...

  7. ML之监督学习算法之分类算法一 ———— k-近邻算法(最邻近算法)

    一.概述 最近邻规则分类(K-Nearest Neighbor)KNN算法 由Cover 和Hart在1968年提出了最初的邻近算法, 这是一个分类(classification)算法 输入基于实例的 ...

  8. k最邻近算法——使用kNN进行手写识别

    上篇文章中提到了使用pillow对手写文字进行预处理,本文介绍如何使用kNN算法对文字进行识别. 基本概念 k最邻近算法(k-Nearest Neighbor, KNN),是机器学习分类算法中最简单的 ...

  9. 机器学习---K最近邻(k-Nearest Neighbour,KNN)分类算法

    K最近邻(k-Nearest Neighbour,KNN)分类算法 1.K最近邻(k-Nearest Neighbour,KNN) K最近邻(k-Nearest Neighbour,KNN)分类算法, ...

随机推荐

  1. postman批量执行 要给请求加断言,批量执行的时候才会去统计,成功和失败的条数

    1.设置请求断言后保存 2.点击runner去批量执行 3.有断言的请求就会统计

  2. 【转】JMeter使用指南

    Abstract 本文重点介绍JMeter工具在测试中地位以及其中一些难以理解或者手册中含糊不清的感念,读者可以通过本文了解这些概念,然后再根据自己的需要查阅JMeter中各个组件的具体用法来完成测试 ...

  3. Timesten 日常管理命令合集

    Timesten 日常管理命令合集 以下所有操作都是基于TT  11 版,早前版本本人没用过,命令是否适用我不清楚啊! 各类服务管理 一.TT的启停  停服务:  1.停止复制与cache 进程:  ...

  4. MySQL 加快导入数据

    1.临时关闭binlog,避免写入日志 set sql_log_bin = off: mysql> show VARIABLES like '%log_bin%'; +------------- ...

  5. Windows下编译sqlite3

    一.下载 sqlite-amalgamation-3240000:sqlite源代码,主要需要头文件sqlite3.h sqlite-dll-win32-x86-3240000.zip:sqlite3 ...

  6. Java int Integer

    http://www.cnblogs.com/haimingwey/archive/2012/04/16/2451813.html http://developer.51cto.com/art/200 ...

  7. Linux 之rsyslog+LogAnalyzer 日志收集系统

    一.LogAnalyzer介绍 LogAnalyzer工具提供了一个易于使用,功能强大的前端,用于搜索,查看和分析网络活动数据,包括系统日志,事件日志和其他许多日志源.由于它只是将数据展示到我们用户的 ...

  8. python mac下使用多进程报错解决办法

    使用pychram运行python web,web使用了多进程 mac下运行会提示如下: may have been in progress in another thread when fork() ...

  9. ARM汇编 均值滤波实验

    实验要求是排序后去掉最大值最小值,然后把剩下的求平均数. 排序可以用之前的冒泡排序,关键的问题是求平均数.因为ARM没有除法,应该怎么求平均数呢? 最简单的方法就是减法了,用被除数一直减除数,看减了多 ...

  10. Dreamweaver安装与破解

    1.下载Dreamweaver cs6破解版解压包 打开下载网址http://pan.baidu.com/s/1jGr8pbK,点击下载,保存到自己想要保存的位置. 2.下载Dreamweaver c ...