1 ElasticSearch分布式基础

1.1 ES分布式机制

  • 分布式机制:Elasticsearch是一套分布式的系统,分布式是为了应对大数据量。它的特性就是对复杂的分布式机制隐藏掉。
  • 分片机制:数据存储到哪个分片,副本数据写入另外分片。
  • 集群发现机制:新启动es实例,会自动加入集群。
  • shard负载均衡:大量数据写入及查询,es会将数据平均分配。举例,假设现在有3个节点,总共有25个shard要分配到3个节点上去,es会自动进行均匀分配,以保持每个节点的均衡的读写负载请求。
  • shard副本:新增副本数,分片重分配。

1.2 垂直与水平扩容

  垂直扩容:使用更加强大的服务器替代老服务器。但单机存储及运算能力有上线。且成本直线上升。如10台1T的服务器1万,单个10T服务器可能20万。

  水平扩容:采购更多服务器,加入集群。对于ES来说,一般采用水平扩容的方式。

1.3 rebalance

  当新增或减少es实例时,或者新增加数据或者删除数据时,就会导致某些服务器负载过重或者过轻。es集群就会将数据重新分配,保持一个相对均衡的状态。

1.4 master节点

(1)管理es集群的元数据

  • 创建删除节点
  • 创建删除索引

(2)默认情况下,es会自动选择一台机器作为master,因为任何一台机器都可能被选择为master节点,所以单点故障的情况可以忽略不计。

1.5 节点对等

  • 节点对等,每个节点都能接收所有的请求
  • 自动请求路由
  • 响应收集

二、分片shard、副本replica机制

2.1 分片shard

在ES中,索引会被切分成n个分片,每个分片是独立的lucene索引,可以完成搜索分析存储等工作。

分片的好处:

  • 如果一个索引数据量很大,会造成硬件硬盘和搜索速度的瓶颈。如果分成多个分片,分片可以分摊压力。
  • 分片允许用户进行水平的扩展和拆分
  • 分片允许分布式的操作,可以提高搜索以及其他操作的效率

副本的好处:

  • 当一个分片失败或者下线时,备份的分片可以代替工作,提高了高可用性。
  • 备份的分片也可以执行搜索操作,分摊了搜索的压力。

2.2 shard&replica机制

  • 每个index包含一个或多个shard
  • 每个shard都是一个最小工作单元,承载部分数据,lucene实例,完整的建立索引和处理请求的能力
  • 增减节点时,shard会自动在nodes中负载均衡
  • primary shard和replica shard,每个document肯定只存在于某一个primary shard以及其对应的replica shard中,不可能存在于多个primary shard
  • replica shard是primary shard的副本,负责容错,以及承担读请求负载
  • primary shard的数量在创建索引的时候就固定了,replica shard的数量可以随时修改
  • primary shard的默认数量是1,replica默认是1,默认共有2个shard,1个primary shard,1个replica shard。注意:es7以前primary shard的默认数量是5,replica默认是1,默认有10个shard,5个primary shard,5个replica shard
  • primary shard不能和自己的replica shard放在同一个节点上(否则节点宕机,primary shard和副本都丢失,起不到容错的作用),但是可以和其他primary shard的replica shard放在同一个节点上

  

三、创建index

3.1 单node环境下

(1)单node环境下,创建一个index,有3个primary shard,3个replica shard
(2)集群status是yellow
(3)这个时候,只会将3个primary shard分配到仅有的一个node上去,另外3个replica shard是无法分配的
(4)集群可以正常工作,但是一旦出现节点宕机,数据全部丢失,而且集群不可用,无法承接任何请求

PUT /test_index1
{
"settings" : {
"number_of_shards" : 3,
"number_of_replicas" : 1
}
}

3.2 两个node环境下

(1)replica shard分配:3个primary shard,1node,3个replica shard,1 node
(2)primary ---> replica同步
(3)读请求:primary/replica

  

四、横向扩容

假如说存在一个book索引,shard3 replica1

  • 分片自动负载均衡,分片向空闲机器转移。
  • 每个节点存储更少分片,系统资源给与每个分片的资源更多,整体集群性能提高。
  • 扩容极限:节点数大于整体分片数,则必有空闲机器。
  • 超出扩容极限时,可以增加副本数,如设置副本数为2,总共3*3=9个分片。9台机器同时运行,存储和搜索性能更强。容错性更好。
  • 容错性:只要一个索引的所有主分片在,集群就就可以运行。

  

五、es容错机制

以3分片,2副本数,3节点为例介绍。

  • master node宕机,自动master选举,集群为red
  • replica容错:新master将replica提升为primary shard,yellow
  • 重启宕机node,master copy replica到该node,使用原有的shard并同步宕机后的修改,green

  

以上图为例:

在node1宕机的情况下,那么P0 shard就会消失,所有的主分片不是全active,那么集群的状态是red。

  • 容错第一步,重新选举master节点。承担master相关功能。
  • 容错第二步,新master将丢失的P0 shard(主分片)对应的R0 replica(副本分片)提升为主分片,现在的集群状态为yellow并且少一个副本分片,但是现在集群已经可以恢复使用了。
  • 容错第三步,重启故障node,新master会感知到新节点加入,将缺失的副本分片copy一份到新的node上面,copy的是被提升为主分片的分片。现在集群已经完全恢复,状态为green。

ElasticSearch 分布式及容错机制的更多相关文章

  1. Elasticsearch和HDFS 容错机制 备忘

    1.Elasticsearch 横向扩容以及容错机制http://www.bubuko.com/infodetail-2499254.html 2.HDFS容错机制详解https://www.cnbl ...

  2. Elasticsearch由浅入深(二)ES基础分布式架构、横向扩容、容错机制

    Elasticsearch的基础分布式架构 Elasticsearch对复杂分布式机制的透明隐藏特性 Elasticsearch是一套分布式系统,分布式是为了应对大数据量. Elasticsearch ...

  3. Elasticsearch学习笔记(四)ElasticSearch分布式机制

    一.Elasticsearch对复杂分布式机制透明的隐藏特性 1.分片机制: (1)index包含多个shard,每个shard都是一个最小工作单元,承载部分数据,lucene实例,完整的建立索引和处 ...

  4. Elasticsearch分布式机制和document分析

    1. Elasticsearch对复杂分布式机制的透明隐藏特性 1.1)分片机制 1.2)集群发现机制 1.3)shard负载均衡 1.4)shard副本,请求路由,集群扩容,shard重分配 2.  ...

  5. Elasticsearch 横向扩容以及容错机制

    写在前面的话:读书破万卷,编码如有神-------------------------------------------------------------------- 参考内容: <Ela ...

  6. elasticsearch从入门到出门-08-Elasticsearch容错机制:master选举,replica容错,数据恢复

    假如: 9 shard,3 node Elasticsearch容错机制:master选举,replica容错,数据恢复 最佳分配情况: 这样分配之后,不管其中哪个node 宕机这个es 依然可以提供 ...

  7. [源码解析] 并行分布式框架 Celery 之 容错机制

    [源码解析] 并行分布式框架 Celery 之 容错机制 目录 [源码解析] 并行分布式框架 Celery 之 容错机制 0x00 摘要 0x01 概述 1.1 错误种类 1.2 失败维度 1.3 应 ...

  8. ElasticSearch教程——分片、扩容以及容错机制(转学习使用)

    一.Primary shard和replica shard机制 1.index包含多个shard; 2.每个shard都是一个最小的工作单元,承载部分的数据,Lucene实例,完整的简历索引和处理请求 ...

  9. Flink资料(2)-- 数据流容错机制

    数据流容错机制 该文档翻译自Data Streaming Fault Tolerance,文档描述flink在流式数据流图上的容错机制. ------------------------------- ...

随机推荐

  1. Halcon视觉入门芯片识别

    Halcon视觉入门芯片识别 需求 有如下图的一个摆盘,摆盘的方格中摆放芯片,一个格子中只放一个,我们需要知道每个方格中是否有芯片去指导我们将芯片放到空的方格中. 分析 通过图片分析得出 我们感兴趣的 ...

  2. maven的三种项目打包方式----jar,war,pom

    1.pom工程:**用在父级工程或聚合工程中.用来做jar包的版本控制.必须指明这个聚合工程的打包方式为pom 2.war工程:将会打包成war,发布在服务器上的工程.如网站或服务.在SpringBo ...

  3. SSL证书,IIS7、IIS8,http自动跳转到HTTPS

    安装"URL REWRITE2 " 伪静态模块,IIS7需要先确认是否安装 "URL REWRITE2 " 伪静态模块 , 如果您已经安装可以跳过 下载地址:h ...

  4. JspSmartUpload 简略使用

    JspSmartUpload 简略中文API文档 链接:https://blog.csdn.net/weixin_43670802/article/details/105143830 PDF课件 链接 ...

  5. centOs编译安装php7.2支持微擎php扩展

    发现yum安装许多坑 于是只好编译安装 第一步得到镜像地址 在      https://www.php.net/downloads.php     有的地址比较慢,需要耐心等待 cd /usr/lo ...

  6. Java产生指定范围内的随机日期

    要想产生指定范围内的随机日期,首先我们要指定一个范围,那么我们可以通过SImpleDateFormat格式化日期,然后再通过parse()方法设置日期,返回一个Date类型的日期对象,再转化为时间戳( ...

  7. postman项目接口文档和登录步骤原理

    培训内容 实训项目:非常果岭-发现模块接口测试,单接口.流程脚本编写: 使用工具:postman 培训方式 1)postman使用说明 2)项目接口文档和登录步骤原理   一.首先了解postman使 ...

  8. pandas中常用的操作一

    pandas中常用的功能: 1.显示所有的列的信息,999表示显示最大的列为999 pd.options.display.max_columns=999 2.读取excel时设置使用到列的名称,和列的 ...

  9. 磁盘管理+三剑客之awk

    目录 磁盘管理+三剑客之awk 一.磁盘管理 二.格式化命令awk 1.awk的语法 2.参数 3.awk的生命周期 4.awk中的预定义变量 5.awk处理规则的执行流程 6.awk中的函数 7.a ...

  10. suse 12 二进制部署 Kubernetets 1.19.7 - 第12章 - 部署dashboard插件

    文章目录 1.12.0.创建namespace 1.12.1.创建Dashboard rbac文件 1.12.2.创建dashboard文件 1.12.3.查看pod以及svc 1.12.4.获取 d ...