深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了。由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文:

数据层及参数

视觉层及参数

solver配置文件及参数

一、数据准备

官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片。因此有些人并不知道该怎么办。在此我将mnist数据进行了转化,变成了一张张的图片,我们练习就从图片开始。mnist图片数据我放在了百度云盘。

mnist图片数据下载:http://pan.baidu.com/s/1pLMV4Kz

数据分成了训练集(60000张共10类)和测试集(共10000张10类),每个类别放在一个单独的文件夹里。并且将所有的图片,都生成了txt列表清单(train.txt和test.txt)。大家下载下来后,直接解压到当前用户根目录下就可以了。由于我是在windows下压缩的,因此是winrar文件。如果大家要在linux下解压缩,需要安装rar的linux版本,也是十分简单

sudo apt-get install rar

二、导入caffe库,并设定文件路径

我是将mnist直接放在根目录下的,所以代码如下:

# -*- coding: utf-8 -*-

import caffe
from caffe import layers as L,params as P,proto,to_proto
#设定文件的保存路径
root='/home/xxx/' #根目录
train_list=root+'mnist/train/train.txt' #训练图片列表
test_list=root+'mnist/test/test.txt' #测试图片列表
train_proto=root+'mnist/train.prototxt' #训练配置文件
test_proto=root+'mnist/test.prototxt' #测试配置文件
solver_proto=root+'mnist/solver.prototxt' #参数文件

其中train.txt 和test.txt文件已经有了,其它三个文件,我们需要自己编写。

此处注意:一般caffe程序都是先将图片转换成lmdb文件,但这样做有点麻烦。因此我就不转换了,我直接用原始图片进行操作,所不同的就是直接用图片操作,均值很难计算,因此可以不减均值。

二、生成配置文件

配置文件实际上就是一些txt文档,只是后缀名是prototxt,我们可以直接到编辑器里编写,也可以用代码生成。此处,我用python来生成。

#编写一个函数,生成配置文件prototxt
def Lenet(img_list,batch_size,include_acc=False):
#第一层,数据输入层,以ImageData格式输入
data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,
transform_param=dict(scale= 0.00390625))
#第二层:卷积层
conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
#池化层
pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
#卷积层
conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
#池化层
pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
#全连接层
fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
#激活函数层
relu3=L.ReLU(fc3, in_place=True)
#全连接层
fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
#softmax层
loss = L.SoftmaxWithLoss(fc4, label) if include_acc: # test阶段需要有accuracy层
acc = L.Accuracy(fc4, label)
return to_proto(loss, acc)
else:
return to_proto(loss) def write_net():
#写入train.prototxt
with open(train_proto, 'w') as f:
f.write(str(Lenet(train_list,batch_size=64))) #写入test.prototxt
with open(test_proto, 'w') as f:
f.write(str(Lenet(test_list,batch_size=100, include_acc=True)))

配置文件里面存放的,就是我们所说的network。我这里生成的network,可能和原始的Lenet不太一样,不过影响不大。

三、生成参数文件solver

同样,可以在编辑器里面直接书写,也可以用代码生成。

#编写一个函数,生成参数文件
def gen_solver(solver_file,train_net,test_net):
s=proto.caffe_pb2.SolverParameter()
s.train_net =train_net
s.test_net.append(test_net)
s.test_interval = 938 #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试
s.test_iter.append(100) #10000/100 测试迭代次数,需要迭代100次,才完成一次所有数据的测试
s.max_iter = 9380 #10 epochs , 938*10,最大训练次数
s.base_lr = 0.01 #基础学习率
s.momentum = 0.9 #动量
s.weight_decay = 5e-4 #权值衰减项
s.lr_policy = 'step' #学习率变化规则
s.stepsize=3000 #学习率变化频率
s.gamma = 0.1 #学习率变化指数
s.display = 20 #屏幕显示间隔
s.snapshot = 938 #保存caffemodel的间隔
s.snapshot_prefix =root+'mnist/lenet' #caffemodel前缀
s.type ='SGD' #优化算法
s.solver_mode = proto.caffe_pb2.SolverParameter.GPU #加速
#写入solver.prototxt
with open(solver_file, 'w') as f:
f.write(str(s))

四、开始训练模型

训练过程中,也在不停的测试。

#开始训练
def training(solver_proto):
caffe.set_device(0)
caffe.set_mode_gpu()
solver = caffe.SGDSolver(solver_proto)
solver.solve()

最后,调用以上的函数就可以了。

if __name__ == '__main__':
write_net()
gen_solver(solver_proto,train_proto,test_proto)
training(solver_proto)

五、完成的python文件

mnist.py

# -*- coding: utf-8 -*-

import caffe
from caffe import layers as L,params as P,proto,to_proto
#设定文件的保存路径
root='/home/xxx/' #根目录
train_list=root+'mnist/train/train.txt' #训练图片列表
test_list=root+'mnist/test/test.txt' #测试图片列表
train_proto=root+'mnist/train.prototxt' #训练配置文件
test_proto=root+'mnist/test.prototxt' #测试配置文件
solver_proto=root+'mnist/solver.prototxt' #参数文件 #编写一个函数,生成配置文件prototxt
def Lenet(img_list,batch_size,include_acc=False):
#第一层,数据输入层,以ImageData格式输入
data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,
transform_param=dict(scale= 0.00390625))
#第二层:卷积层
conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
#池化层
pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
#卷积层
conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
#池化层
pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
#全连接层
fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
#激活函数层
relu3=L.ReLU(fc3, in_place=True)
#全连接层
fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
#softmax层
loss = L.SoftmaxWithLoss(fc4, label) if include_acc: # test阶段需要有accuracy层
acc = L.Accuracy(fc4, label)
return to_proto(loss, acc)
else:
return to_proto(loss) def write_net():
#写入train.prototxt
with open(train_proto, 'w') as f:
f.write(str(Lenet(train_list,batch_size=64))) #写入test.prototxt
with open(test_proto, 'w') as f:
f.write(str(Lenet(test_list,batch_size=100, include_acc=True))) #编写一个函数,生成参数文件
def gen_solver(solver_file,train_net,test_net):
s=proto.caffe_pb2.SolverParameter()
s.train_net =train_net
s.test_net.append(test_net)
s.test_interval = 938 #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试
s.test_iter.append(500) #50000/100 测试迭代次数,需要迭代500次,才完成一次所有数据的测试
s.max_iter = 9380 #10 epochs , 938*10,最大训练次数
s.base_lr = 0.01 #基础学习率
s.momentum = 0.9 #动量
s.weight_decay = 5e-4 #权值衰减项
s.lr_policy = 'step' #学习率变化规则
s.stepsize=3000 #学习率变化频率
s.gamma = 0.1 #学习率变化指数
s.display = 20 #屏幕显示间隔
s.snapshot = 938 #保存caffemodel的间隔
s.snapshot_prefix = root+'mnist/lenet' #caffemodel前缀
s.type ='SGD' #优化算法
s.solver_mode = proto.caffe_pb2.SolverParameter.GPU #加速
#写入solver.prototxt
with open(solver_file, 'w') as f:
f.write(str(s)) #开始训练
def training(solver_proto):
caffe.set_device(0)
caffe.set_mode_gpu()
solver = caffe.SGDSolver(solver_proto)
solver.solve()
#
if __name__ == '__main__':
write_net()
gen_solver(solver_proto,train_proto,test_proto)
training(solver_proto)

我将此文件放在根目录下的mnist文件夹下,因此可用以下代码执行

sudo python mnist/mnist.py

在训练过程中,会保存一些caffemodel。多久保存一次,保存多少次,都可以在solver参数文件里进行设置。

我设置为训练10 epoch,9000多次,测试精度可以达到99%

caffe的python接口学习(4):mnist实例---手写数字识别的更多相关文章

  1. caffe的python接口学习(4)mnist实例手写数字识别

    以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧 一 数据准备 准备训练集和测试集图片的列表清单; 二 导入caffe库,设定文件路径 # -*- coding: utf-8 -*- im ...

  2. keras实现mnist数据集手写数字识别

    一. Tensorflow环境的安装 这里我们只讲CPU版本,使用 Anaconda 进行安装 a.首先我们要安装 Anaconda 链接:https://pan.baidu.com/s/1AxdGi ...

  3. NN:利用深度学习之神经网络实现手写数字识别(数据集50000张图片)—Jason niu

    import mnist_loader import network training_data, validation_data, test_data = mnist_loader.load_dat ...

  4. 分类-MNIST(手写数字识别)

    这是学习<Hands-On Machine Learning with Scikit-Learn and TensorFlow>的笔记,如果此笔记对该书有侵权内容,请联系我,将其删除. 这 ...

  5. CNN完成mnist数据集手写数字识别

    # coding: utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data d ...

  6. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

  7. [Python]基于CNN的MNIST手写数字识别

    目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...

  8. 深度学习之 mnist 手写数字识别

    深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...

  9. 用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别

    用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学 ...

随机推荐

  1. SQL注入—我是如何一步步攻破一家互联网公司的

    最近在研究Web安全相关的知识,特别是SQL注入类的相关知识.接触了一些与SQL注入相关的工具.周末在家闲着无聊,想把平时学的东东结合起来攻击一下身边某个小伙伴去的公司,看看能不能得逞.不试不知道,一 ...

  2. Apache Lucene(全文检索引擎)—分词器

    目录 返回目录:http://www.cnblogs.com/hanyinglong/p/5464604.html 本项目Demo已上传GitHub,欢迎大家fork下载学习:https://gith ...

  3. 实用CSS3的transform实现多种动画效果

    查看效果:http://keleyi.com/a/bjad/b6x9q8gs.htm 以下是代码: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4. ...

  4. 1-1 console的用法

    console里面具体提供了哪些方法可以供我们平时调试时使用. 目前控制台方法和属性有: ["$$", "$x", "dir", " ...

  5. GIS管网项目-flex/java

    开发语言是flex.java,开发平台是myeclise.eclise,后台数据库是oracel或sqlserver,开发接口是arcgis api for flex,提供以下的功能: 1.应急指挥: ...

  6. Blink, 通向哈里·波特的魔法世界

    <哈里·波特>的故事里面,魔法界的新闻报纸都是动画的,配图带有动画效果.能够回放新闻的主要场景. 初次看到这个,感觉还挺新鲜的.不过现在,Blink 这样的 App 可以让这个魔法世界的幻 ...

  7. 在易语言中调用MS SQL SERVER数据库存储过程方法总结

    Microsoft SQL SERVER 数据库存储过程,根据其输入输出数据,笼统的可以分为以下几种情况或其组合:无输入,有一个或多个输入参数,无输出,直接返回(return)一个值,通过output ...

  8. iOS开发工程师面试题(一)

    SDWEBImge原理 一,先上标答 1)UIImageView+WebCache:  setImageWithURL:placeholderImage:options: 先显示 placeholde ...

  9. 使用 UICollectionView 实现日历签到功能

    概述 在 App 中,日历通常与签到功能结合使用.是提高用户活跃度的一种方式,同时,签到数据中蕴含了丰富的极其有价值的信息.下面我们就来看看如何在 App 中实现日历签到功能. 效果图 ..... 思 ...

  10. Windows on Device 项目实践 1 - PWM调光灯制作

    在前一篇文章<Wintel物联网平台-Windows IoT新手入门指南>中,我们讲解了Windows on Device硬件准备和软件开发环境的搭建,以及Hello Blinky项目的演 ...