G - 逆序对的数量
G - 逆序对的数量
什么是逆序对?
简单来说,两个数比较,下标小的数反而大,两个数称之为逆序对如\({3,1}\)就是这么一个逆序对
归并排序
由于逆序对逆序的性质,我们可以联想到排序:
排序的过程就是消除逆序对的过程,消除的次数就是逆序对的数量
归并排序的性质:每次划分后合并时左右子区间都是从小到大排好序的,我们只需要统计右边区间每一个数分别会与左边区间产生多少逆序对即可
注意
逆序对的个数最大的情况发生在整个数组逆序时即:
\]
由于
\]
答案是大于\(10^{10}\)的(会爆int)
注意要使用long long
代码1
点击查看代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
#define X first
#define Y second
typedef pair<int,int> pii;
typedef long long LL;
const char nl = '\n';
const int N = 5e5+10;
const int M = 2e5+10;
int n,m;
int q[N],temp[N];
LL merge_sort(int l,int r){
if(l >= r)return 0;
int mid = l + r >> 1;
LL res = merge_sort(l,mid) + merge_sort(mid+1,r);
int k = 0,i = l,j = mid + 1;
while(i <= mid && j <= r){
if(q[i] <= q[j])temp[++k] = q[i++];
else{
temp[++k] = q[j++];
res += mid - i +1;
}
}
while(i <= mid)temp[++k] = q[i++];
while(j <= r)temp[++k] = q[j++];
for(int i = l,k = 1; i <= r; i ++,k ++)q[i] = temp[k];
return res;
}
void solve(){
cin >> n;
for(int i = 1; i <= n; i ++ )cin >> q[i];
cout << merge_sort(1,n) << nl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
solve();
}
树状数组
思路来源于暴力解法:从小到大枚举数组的每一个数(天然地形成逆序对\(j<i\)(j指的是先前的数,i指的是当前的数)的条件),此时我们只需要知道前面有多少个数比a_i(当前数)小即可,这里我们可以用到桶(就是一个数组cnt)来记录每个数的出现(怎么记录?每次枚举到这个数后,\(cnt[a_i]++\)即可)
然而,\(a_i\)的范围是\(10^9\),而\(n\)的范围却只有\(5\cdot10^5\),直接开cnt数组会mle
这时,我们又可以发现逆序对只跟相对大小有关系,所以我们的第一步优化便是将原数组离散化处理(排序+去重)得到每个数的相对大小,同时每次枚举时使用二分来找到每个数的相对大小即可
然而,此时我们又遇到一个问题,对于每次统计前面有多少个数比a_i(当前数)小又需要多次求和,暴力解又会tle
这时,我们又可以联想到多次求和有奇效的树状数组,通过树状数组来维护桶
答案显而易见
\]
\(getsum(1,k)\)为小于等于\(a_i\)的数的数量(等于的话不是逆序对)
\(i - getsum(1,k)\)得到的则时关于\(a_i\)逆序对的数量
代码
点击查看代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
#define X first
#define Y second
typedef pair<int,int> pii;
typedef long long LL;
const char nl = '\n';
const int N = 1e6+10;
const int M = 2e5+10;
int n,m;
int a[N],b[N]; //原数组,树状数组(维护桶)
vector<int> v; //储存所有待离散化的值进行排序和去重
LL ans = 0;
int lowbit(int x){
return x & -x;
}
void add(int k,int x){
while(k <= n){
b[k] += x;
k += lowbit(k);
}
}
LL getsum(int l,int r){
LL s1 = 0;
l --;
while(l){
s1 += b[l];
l -= lowbit(l);
}
LL s2 = 0;
while(r){
s2 += b[r];
r -= lowbit(r);
}
return s2 - s1;
}
int find(int x){ //找到a[i]在序列中排第几
int l = 0,r = v.size() - 1;
while(l < r){
int mid = l + r >> 1;
if(v[mid] >= x)r = mid;
else l = mid + 1;
}
return l + 1; //v从0开始
//此处映射为1,2,3,...,n
}
void solve(){
cin >> n;
for(int i = 1; i <= n; i ++ ){
cin >> a[i];
v.push_back(a[i]);
}
sort(v.begin(),v.end()); //排序(从小到大)
v.erase(unique(v.begin(),v.end()),v.end()); //去重
// //离散化得到每个数的相对大小
//枚举每个数找逆序对数量
for(int i = 1; i <= n; i ++ ){
int k = find(a[i]);
add(k,1);
ans += (i - getsum(1,k)); //getsum(1,k)为小于等于a[i]的数的数量(等于的话不是逆序对)
}
cout << ans << nl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
solve();
}
G - 逆序对的数量的更多相关文章
- [算法导论]练习2-4.d求排列中逆序对的数量
转载请注明:http://www.cnblogs.com/StartoverX/p/4283186.html 题目:给出一个确定在n个不同元素的任何排列中逆序对数量的算法,最坏情况需要Θ(nlgn)时 ...
- 求数组中的逆序对的数量----剑指offer36题
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数: 如数组{7,5,6,4},逆序对总共有5对,{7,5},{7,6},{7, ...
- [AcWing 788] 逆序对的数量
点击查看代码 #include<iostream> using namespace std; typedef long long ll; const int N = 1e5 + 10; i ...
- 用归并排序或树状数组求逆序对数量 poj2299
题目链接:https://vjudge.net/problem/POJ-2299 推荐讲解树状数组的博客:https://blog.csdn.net/int64ago/article/details/ ...
- Codeforces 987 K预处理BFS 3n,7n+1随机结论题/不动点逆序对 X&Y=0连边DFS求连通块数目
A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...
- lintcode:逆序对
题目 在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.给你一个数组,求出这个数组中逆序对的总数.概括:如果a[i] > a[j] 且 i < j, a[i] ...
- 洛谷 P1908 逆序对
\[传送门qwq\] 题目描述 猫猫\(TOM\)和小老鼠\(JERRY\)最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计. 最近,\(TOM\)老猫查阅 ...
- 牛客练习赛38 D 题 出题人的手环 (离散化+树状数组求逆序对+前缀和)
链接:https://ac.nowcoder.com/acm/contest/358/D来源:牛客网 出题人的手环 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他 ...
- 剑指Offer 35. 数组中的逆序对 (数组)
题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对1000000007取模的结果输出. 即输出P%1000 ...
- 洛谷P1908 逆序对【递归】
题目:https://www.luogu.org/problemnew/show/P1908 题意:给定一个数组,求逆序对个数. 思路: 是一个很经典的题目了.通过归并排序可以求逆序对个数. 现在有一 ...
随机推荐
- 这可能是最全的SpringBoot3新版本变化了!
11月24号,Spring Boot 3.0 发布了第一个正式的 GA 版本,一起看看新版本到底有哪些变化. 2.7版本升级指南 官方提供了一个从 2.7 版本升级到 3.0 的指南:https:// ...
- VBA驱动SAP GUI自动化:查找页面元素FindAllByName
我们在VBA中嵌入SAP原生的[脚本录制与回放]功能生成的VBS脚本,可以实现很多自动化操作.但只有我们对SAP做了一系列动作,才会得到这些动作的脚本.然而,一旦我们需要用代码提前做一些判断,然后再决 ...
- 乐维监控与Zabbix对比分析(一)——架构、性能
近年来,Zabbix凭借其近乎无所不能的监控及优越的性能一路高歌猛进,在开源监控领域独占鳌头:而作为后起的新锐监控平台--乐维监控,则不断吸收Zabbix,Prometheus等优秀开源平台的优点,兼 ...
- CPU 和 CPU Core 有啥区别?多核 CPU?多个 CPU?
CPU 全称 Central Processing Unit,中央处理器,计算机的大脑,长这个样子: CPU 通过一个插槽安装在主板上,这个插槽也叫做 CPU Socket,它长这个样子: 而我们说的 ...
- 源码解读之TypeScript类型覆盖检测工具type-coverage
因为团队内部开启了一个持续的前端代码质量改进计划,其中一个专项就是TS类型覆盖率,期间用到了type-coverage这个仓库,所以借这篇文章分享一下这个工具,并顺便从源码阅读的角度来分析一下该工具的 ...
- Jmeter ForEach 循环控制器
ForEach Controller 即循环控制器,顾名思义是定义一种循环规则,如下图: 1.名称:控制器名称,可根据用户需要任意填写,也可不填 2.注释:用户可根据需要任意填写,也可不填 3.输入变 ...
- m3u8文件后缀jpg,png等处理方法及视频合并
处理 # 解析伪装成png的ts def resolve_ts(src_path, dst_path): ''' 如果m3u8返回的ts文件地址为 https://p1.eckwai.com/ufil ...
- Vue3 企业级优雅实战 - 组件库框架 - 9 实现组件库 cli - 上
上文搭建了组件库 cli 的基础架子,实现了创建组件时的用户交互,但遗留了 cli/src/command/create-component.ts 中的 createNewComponent 函数,该 ...
- 一文教会你mock(Mockito和PowerMock双剑合璧)
作者:京东物流 杨建民 1.什么是Mock Mock有模仿.伪造的含义.Mock测试就是在测试过程中,对于某些不容易构造或者不容易获取的对象,用一个虚拟的对象来创建以便测试的测试方法.mock工具使用 ...
- ubunut安装qtcreater
安装gcc 1 kxb@kxb:~$ gcc -v 2 3 Command 'gcc' not found, but can be installed with: 4 5 sudo apt insta ...