CF845F - Guards In The Storehouse
题意:在 \((x,y)\) 放一个哨兵,可以监视本行后面的所有格子直到障碍、本列后面所有的格子直到障碍。求使全盘最多一个位置不被监视的方案总数。
我们发现,因为 \(nm\le 250\),所以 \(\min(n,m)\le 15\)。我们选择较小的这个作为 \(n\),另一个作为 \(m\) 进行状压。
设计状态 \(dp_{x,y,msk,i,j}\) 表示当前 \(dp\) 到位置 \((x,y)\),\(msk_k=1\) 的行已经被左边的哨兵监视了,当前有/没有没有被监视的位置,当前位置有/没有被上面的哨兵监视。
我们的转移是:
如果当前是障碍,则把所有状态往 \(\{msk \wedge(2^{15}-1-2^{x}),i,0\}\) 转移。
如果当前是空地:
\begin{cases}
\text{ 当前的位置自己填了}: dp_{msk,i,j}\rightarrow dp_{msk\vee(2^x),i,1}\\
\text{ 没填,当前的位置被上面的覆盖了}: dp_{msk,i,1}\rightarrow dp_{msk,i,1}\\
\text{ 没填,上面不能覆盖,被左边覆盖}: dp_{msk,i,0}[msk_x=1]\rightarrow dp_{msk,i,0}\\
\text{ 没填,没有被覆盖}: dp_{msk,0,0}[msk_x=0]\rightarrow dp_{msk,1,0}
\end{cases}
\end{aligned}\]
注意,这里存在一个问题,就是每一列 \(\text{dp}\) 结束之后要清空 \(j\),但是这样就需要分类讨论。我们可以把矩阵设成 \(n+1\) 行,第 \(n+1\) 行都是障碍,这样更换列的时候就会天然把 \(j\) 清掉。
我们可以滚动掉 \(x\) 和 \(y\),设计 \(dp\) 和 \(tmp\),转移的时候从 \(dp\) 往 \(tmp\) 转移,结束之后把 \(tmp\) 复制到 \(dp\),好处还在于 \(x\) 和 \(y\) 以及上一轮的 \(x'\) 和 \(y'\) 只存在于循环变量中,并不参与 \(dp\) 转移的过程。
const ll P=1000000007;
int n,m,a[255][255],b[255][255],p[255][255],cnt=0;
int dp[1<<16][2][2],tmp[1<<16][2][2];
st s;
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m;
rp(i,n){
cin>>s;
rp(j,m)if(s[j-1]=='.')a[i][j]=1;
}
if(n>m){
swap(n,m);
rp(i,n)rp(j,m)b[i][j]=a[j][i];
rep(i,0,n+1)rep(j,0,m+1)a[i][j]=0;
rp(i,n)rp(j,m)a[i][j]=b[i][j];
}
dp[0][0][0]=1;
rp(y,m)rp(x,n+1){
rd(i,1<<(n+2))rd(j,2)rd(k,2)tmp[i][j][k]=0;
if(!a[x][y]){
rd(msk,1<<(n+2))rd(j,2)rd(k,2)
if(msk>>x&1)tmp[msk^(1<<x)][j][0]=(tmp[msk^(1<<x)][j][0]+dp[msk][j][k])%P;
else tmp[msk][j][0]=(tmp[msk][j][0]+dp[msk][j][k])%P;
}else{
rd(msk,1<<(n+2))rd(j,2)rd(k,2)
tmp[msk|(1<<x)][j][1]=(tmp[msk|(1<<x)][j][1]+dp[msk][j][k])%P;
rd(msk,1<<(n+2))rd(j,2)
tmp[msk][j][1]=(tmp[msk][j][1]+dp[msk][j][1])%P;
rd(msk,1<<(n+2))rd(j,2)if(msk>>x&1)
tmp[msk][j][0]=(tmp[msk][j][0]+dp[msk][j][0])%P;
rd(msk,1<<(n+2))if(!(msk>>x&1))
tmp[msk][1][0]=(tmp[msk][1][0]+dp[msk][0][0])%P;
}
rd(i,1<<(n+2))rd(j,2)rd(k,2)dp[i][j][k]=tmp[i][j][k];
}
int ans=0;
rd(i,1<<(n+2))rd(j,2)rd(k,2)ans=(ans+dp[i][j][k])%P;
cout<<ans<<endl;
return 0;
}
//Crayan_r
CF845F - Guards In The Storehouse的更多相关文章
- 【CF845F】Guards In The Storehouse 插头DP
[CF845F]Guards In The Storehouse 题意:一个n*m的房间,每个格子要么是障碍要么是空地.对于每个空地你可以选择放或者不放守卫.一个守卫能保护到的位置是:他右面的一行空地 ...
- Educational Codeforces Round 27 F. Guards In The Storehouse
F. Guards In The Storehouse time limit per test 1.5 seconds memory limit per test 512 megabytes inpu ...
- 【二分答案+贪心】UVa 1335 - Beijing Guards
Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the Imperial City ...
- LA 3177 Beijing Guards(二分法 贪心)
Beijing Guards Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the ...
- uva 1335 - Beijing Guards(二分)
题目链接:uva 1335 - Beijing Guards 题目大意:有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个相邻的人拥有同一种礼物, ...
- UVA 11080 - Place the Guards(二分图判定)
UVA 11080 - Place the Guards 题目链接 题意:一些城市.之间有道路相连,如今要安放警卫,警卫能看守到当前点周围的边,一条边仅仅能有一个警卫看守,问是否有方案,假设有最少放几 ...
- UVALive 3177 Beijing Guards
题目大意:给定一个环,每个人要得到Needi种物品,相邻的人之间不能得到相同的,问至少需要几种. 首先把n=1特判掉. 然后在n为偶数的时候,答案就是max(Needi+Needi+1)(包括(1,n ...
- Less的guards and argument matching
less guards/argument matching: .setbackground(@number) when (@number>0){ .setbackground( @number ...
- Nordic Collegiate Programming Contest 2015 G. Goblin Garden Guards
In an unprecedented turn of events, goblins recently launched an invasion against the Nedewsian city ...
- Erlang function guards NOTE
Note: I've compared , and ; in guards to the operators andalso and orelse. They're not exactly the s ...
随机推荐
- JavaScript入门⑦-DOM操作大全
JavaScript入门系列目录 JavaScript入门①-基础知识筑基 JavaScript入门②-函数(1)基础{浅出} JavaScript入门③-函数(2)原理{深入}执行上下文 JavaS ...
- 你的项目使用Optional了吗?
1.基本概念 java.util.Optional<T>类本质上就是一个容器,该容器的数值可以是空代表一个值不存在,也可以是非空代表一个值存在. 2.获取对象 2.1 相关方法 2.2 案 ...
- python解释器下载与基本使用
python介绍与解释器下载基本使用 1.python发展方向 web方向.自动化运维.自动化测试.自动化办公.网络爬虫.金融量化.人工智能.机器学习.数据分析 2.python解释器 历史 ...
- HTML笨方法仿写站酷
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- DSS+Linkis Ansible 单机一键安装脚本
DSS+Linkis Ansible 单机一键安装脚本 一.简介 为解决繁琐的部署流程,简化安装步骤,本脚本提供一键安装最新版本的DSS+Linkis环境:部署包中的软件采用我自己编译的安装包,并且为 ...
- Linux安装&卸载mysql5.7
Linux系统下卸载mysql 停止mysql服务 systemctl stop mysqld.service 查看安装的mysql服务 rpm -qa|grep -i mysql 删除安装的mysq ...
- [OpenCV实战]17 基于卷积神经网络的OpenCV图像着色
目录 1 彩色图像着色 1.1 定义着色问题 1.2 CNN彩色化结构 1.3 从 中恢复彩色图像 1.4 具有颜色再平衡的多项式损失函数 1.5 着色结果 2 OpenCV中实现着色 2.1 模型下 ...
- yolov5数据集制作 数据集分割+voc格式转txt格式代码
先上数据集分割代码 网上没找到合适的 自己写了一个 分割比例为0.6 :0.2 :0.2 import os import random oriImgDir = "./change14img ...
- Java学习笔记:2022年1月7日
Java学习笔记:2022年1月7日 摘要:今天的这篇笔记主要是通过讲解基本的JVM结构来理解Java中一些行为的运行机制,进而更加的深入理解Java的运行原理. 目录 Java学习笔记:2022年1 ...
- Coolify系列-手把手教学解决局域网局域网中的其他主机访问虚拟机以及docker服务
背景 我在windows电脑安装了一个VM,使用VM开启了Linux服务器,运行docker,下载服务镜像,然后运行服务,然后遇到了主机无法访问服务的问题. 问题排查 STEP1:首先要开启防火墙端口 ...