题意:在 \((x,y)\) 放一个哨兵,可以监视本行后面的所有格子直到障碍、本列后面所有的格子直到障碍。求使全盘最多一个位置不被监视的方案总数。

我们发现,因为 \(nm\le 250\),所以 \(\min(n,m)\le 15\)。我们选择较小的这个作为 \(n\),另一个作为 \(m\) 进行状压。

设计状态 \(dp_{x,y,msk,i,j}\) 表示当前 \(dp\) 到位置 \((x,y)\),\(msk_k=1\) 的行已经被左边的哨兵监视了,当前有/没有没有被监视的位置,当前位置有/没有被上面的哨兵监视。

我们的转移是:

  • 如果当前是障碍,则把所有状态往 \(\{msk \wedge(2^{15}-1-2^{x}),i,0\}\) 转移。

  • 如果当前是空地:

\[\begin{aligned}
\begin{cases}
\text{ 当前的位置自己填了}: dp_{msk,i,j}\rightarrow dp_{msk\vee(2^x),i,1}\\
\text{ 没填,当前的位置被上面的覆盖了}: dp_{msk,i,1}\rightarrow dp_{msk,i,1}\\
\text{ 没填,上面不能覆盖,被左边覆盖}: dp_{msk,i,0}[msk_x=1]\rightarrow dp_{msk,i,0}\\
\text{ 没填,没有被覆盖}: dp_{msk,0,0}[msk_x=0]\rightarrow dp_{msk,1,0}
\end{cases}
\end{aligned}\]

注意,这里存在一个问题,就是每一列 \(\text{dp}\) 结束之后要清空 \(j\),但是这样就需要分类讨论。我们可以把矩阵设成 \(n+1\) 行,第 \(n+1\) 行都是障碍,这样更换列的时候就会天然把 \(j\) 清掉。

我们可以滚动掉 \(x\) 和 \(y\),设计 \(dp\) 和 \(tmp\),转移的时候从 \(dp\) 往 \(tmp\) 转移,结束之后把 \(tmp\) 复制到 \(dp\),好处还在于 \(x\) 和 \(y\) 以及上一轮的 \(x'\) 和 \(y'\) 只存在于循环变量中,并不参与 \(dp\) 转移的过程。

const ll P=1000000007;
int n,m,a[255][255],b[255][255],p[255][255],cnt=0;
int dp[1<<16][2][2],tmp[1<<16][2][2];
st s;
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m;
rp(i,n){
cin>>s;
rp(j,m)if(s[j-1]=='.')a[i][j]=1;
}
if(n>m){
swap(n,m);
rp(i,n)rp(j,m)b[i][j]=a[j][i];
rep(i,0,n+1)rep(j,0,m+1)a[i][j]=0;
rp(i,n)rp(j,m)a[i][j]=b[i][j];
}
dp[0][0][0]=1;
rp(y,m)rp(x,n+1){
rd(i,1<<(n+2))rd(j,2)rd(k,2)tmp[i][j][k]=0;
if(!a[x][y]){
rd(msk,1<<(n+2))rd(j,2)rd(k,2)
if(msk>>x&1)tmp[msk^(1<<x)][j][0]=(tmp[msk^(1<<x)][j][0]+dp[msk][j][k])%P;
else tmp[msk][j][0]=(tmp[msk][j][0]+dp[msk][j][k])%P;
}else{
rd(msk,1<<(n+2))rd(j,2)rd(k,2)
tmp[msk|(1<<x)][j][1]=(tmp[msk|(1<<x)][j][1]+dp[msk][j][k])%P;
rd(msk,1<<(n+2))rd(j,2)
tmp[msk][j][1]=(tmp[msk][j][1]+dp[msk][j][1])%P;
rd(msk,1<<(n+2))rd(j,2)if(msk>>x&1)
tmp[msk][j][0]=(tmp[msk][j][0]+dp[msk][j][0])%P;
rd(msk,1<<(n+2))if(!(msk>>x&1))
tmp[msk][1][0]=(tmp[msk][1][0]+dp[msk][0][0])%P;
}
rd(i,1<<(n+2))rd(j,2)rd(k,2)dp[i][j][k]=tmp[i][j][k];
}
int ans=0;
rd(i,1<<(n+2))rd(j,2)rd(k,2)ans=(ans+dp[i][j][k])%P;
cout<<ans<<endl;
return 0;
}
//Crayan_r

CF845F - Guards In The Storehouse的更多相关文章

  1. 【CF845F】Guards In The Storehouse 插头DP

    [CF845F]Guards In The Storehouse 题意:一个n*m的房间,每个格子要么是障碍要么是空地.对于每个空地你可以选择放或者不放守卫.一个守卫能保护到的位置是:他右面的一行空地 ...

  2. Educational Codeforces Round 27 F. Guards In The Storehouse

    F. Guards In The Storehouse time limit per test 1.5 seconds memory limit per test 512 megabytes inpu ...

  3. 【二分答案+贪心】UVa 1335 - Beijing Guards

    Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the Imperial City ...

  4. LA 3177 Beijing Guards(二分法 贪心)

    Beijing Guards Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the ...

  5. uva 1335 - Beijing Guards(二分)

    题目链接:uva 1335 - Beijing Guards 题目大意:有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个相邻的人拥有同一种礼物, ...

  6. UVA 11080 - Place the Guards(二分图判定)

    UVA 11080 - Place the Guards 题目链接 题意:一些城市.之间有道路相连,如今要安放警卫,警卫能看守到当前点周围的边,一条边仅仅能有一个警卫看守,问是否有方案,假设有最少放几 ...

  7. UVALive 3177 Beijing Guards

    题目大意:给定一个环,每个人要得到Needi种物品,相邻的人之间不能得到相同的,问至少需要几种. 首先把n=1特判掉. 然后在n为偶数的时候,答案就是max(Needi+Needi+1)(包括(1,n ...

  8. Less的guards and argument matching

    less guards/argument matching: .setbackground(@number) when (@number>0){ .setbackground( @number ...

  9. Nordic Collegiate Programming Contest 2015​ G. Goblin Garden Guards

    In an unprecedented turn of events, goblins recently launched an invasion against the Nedewsian city ...

  10. Erlang function guards NOTE

    Note: I've compared , and ; in guards to the operators andalso and orelse. They're not exactly the s ...

随机推荐

  1. JavaScript入门⑦-DOM操作大全

    JavaScript入门系列目录 JavaScript入门①-基础知识筑基 JavaScript入门②-函数(1)基础{浅出} JavaScript入门③-函数(2)原理{深入}执行上下文 JavaS ...

  2. 你的项目使用Optional了吗?

    1.基本概念 java.util.Optional<T>类本质上就是一个容器,该容器的数值可以是空代表一个值不存在,也可以是非空代表一个值存在. 2.获取对象 2.1 相关方法 2.2 案 ...

  3. python解释器下载与基本使用

    python介绍与解释器下载基本使用 1.python发展方向 ​ web方向.自动化运维.自动化测试.自动化办公.网络爬虫.金融量化.人工智能.机器学习.数据分析 2.python解释器 ​ 历史 ...

  4. HTML笨方法仿写站酷

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. DSS+Linkis Ansible 单机一键安装脚本

    DSS+Linkis Ansible 单机一键安装脚本 一.简介 为解决繁琐的部署流程,简化安装步骤,本脚本提供一键安装最新版本的DSS+Linkis环境:部署包中的软件采用我自己编译的安装包,并且为 ...

  6. Linux安装&卸载mysql5.7

    Linux系统下卸载mysql 停止mysql服务 systemctl stop mysqld.service 查看安装的mysql服务 rpm -qa|grep -i mysql 删除安装的mysq ...

  7. [OpenCV实战]17 基于卷积神经网络的OpenCV图像着色

    目录 1 彩色图像着色 1.1 定义着色问题 1.2 CNN彩色化结构 1.3 从 中恢复彩色图像 1.4 具有颜色再平衡的多项式损失函数 1.5 着色结果 2 OpenCV中实现着色 2.1 模型下 ...

  8. yolov5数据集制作 数据集分割+voc格式转txt格式代码

    先上数据集分割代码 网上没找到合适的 自己写了一个 分割比例为0.6 :0.2 :0.2 import os import random oriImgDir = "./change14img ...

  9. Java学习笔记:2022年1月7日

    Java学习笔记:2022年1月7日 摘要:今天的这篇笔记主要是通过讲解基本的JVM结构来理解Java中一些行为的运行机制,进而更加的深入理解Java的运行原理. 目录 Java学习笔记:2022年1 ...

  10. Coolify系列-手把手教学解决局域网局域网中的其他主机访问虚拟机以及docker服务

    背景 我在windows电脑安装了一个VM,使用VM开启了Linux服务器,运行docker,下载服务镜像,然后运行服务,然后遇到了主机无法访问服务的问题. 问题排查 STEP1:首先要开启防火墙端口 ...