行列式求值

这是一个让你掉头发的模板题

行列式的定义

行列式 (\(\texttt{Determinant}\)) 是一个函数定义,取值是一个标量。

对一个 \(n\times n\) 的矩阵 \(A\)(\(n\) 阶方阵),其 \(n\) 阶行列式写作 \(\det(A)\) 或者 \(|A|\),定义为:

\[\det(A)=|A|=\sum_p(-1)^{\tau(p)}\prod_{i=1}^n a_{i,p_i}
\]

\(p\) 表示一个排列,所有可能的 \(p\) 则是 \(1\) 到 \(n\) 这 \(n\) 个数的全排列。 \(\tau(p)\) 表示一个排列 \(p\)逆序对个数

  • 2阶矩阵的行列式:

    \[\begin{vmatrix}a & b \\c & d\end{vmatrix}=ad-bc
    \]
  • 3阶矩阵的行列式:

    \[\begin{vmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} &a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix}=a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} - a_{12}a_{21}a_{33}
    \]
\[\begin{vmatrix}18 & 5 & 1 \\12 & 2 &3 \\4& 2 & 1\end{vmatrix}
\]

我们今天的问题,仅限于如何把行列式的值求出来

前置知识

\(\tau(p)\)性质

我们发现 \(\tau(p)\) 的奇偶性对行列式求值起到了很大的影响,所以我们需要了解排列的奇偶性相关。

  • 我们约定:如果 \(\tau(p)\) 为奇数,则 \(p\) 为一个奇排列,否则是一个偶排列;
  • 对于排列 \(p\) 我们交换其中的 \(2\) 个元素,其余元素不边,会得到一个新的排列,这种操作叫 对换
  • 一次对换会改变排列的奇偶性(这是我们需要用到的定理)
  • 证明如下:
  • 设排列p(1到m)中,需要交换的两个元素分别为\(p_l和p_r\),令\(n=r-l+1\)
  • 显然,交换\(p_l和p_r\)不会改变\(p_l和p_r\)与\([1,l-1]和[r+1,m]\)中的元素组成逆序对,那么我们只需要考虑[l,r]中产生的影响即可
  • 我们对\(p_l,p_{l+1},p_{l+2}……p_{r}\)进行离散化(把这个子排列变成一个1到n的排列),例如:\(p[l:r]=[2,5,4]则p'[l:r]=[1,3,2]\),其中p[l]在离散化后的排列中,大小为x,p[r]大小为y
  • 我们发现,交换前,子序列中除\(p_l\)外,与\(p_l\)能构成\(n-x\)个逆序对,除\(p_r\)外,与\(p_r\)能构成\(y-1\)个逆序对,考虑x和y产生逆序对的情况后,加起来则是:\((n-x)+(y-1)-[x>y]\)
  • 交换后,子序列中除\(p_l\)外,与\(p_l\)能构成\(x-1\)个逆序对,除\(p_r\)外,与\(p_r\)能构成\(n-y\)个逆序对,考虑x和y产生逆序对的情况后,加起来则是:\((x-1)+(n-y)-[y>x]\)
  • 交换前后,相差的逆序对个数为\((n-x)+(y-1)-[x>y]-(x-1)-(n-y)+[y>x]=2n-2x-2y+2±1\)对,显然为奇数(±1产生的原因:\([x>y]和[y>x]\)中间有且仅有一个会被满足,所以\([y>x]-[x>y]\)的值为±1)

行列式性质1:

交换对应矩阵的 \(2\) 行(列),行列式的值取反

\(\begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\\ \vdots &\vdots &\ddots &\vdots\\\ a_{k,1} &a_{k,2} &\cdots &a_{k,n}\\\ a_{k+1,1} &a_{k+1,2} &\cdots &a_{k+1,n}\\\ \vdots &\vdots &\ddots &\vdots\\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\\ \end{vmatrix} = -\begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\\ \vdots &\vdots &\ddots &\vdots\\\ a_{k+1,1} &a_{k+1,2} &\cdots &a_{k+1,n}\\\ a_{k,1} &a_{k,2} &\cdots &a_{k,n}\\\ \vdots &\vdots &\ddots &\vdots\\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\\ \end{vmatrix}\)

(注意右边的矩阵,只有中间那两行是换了位置的,其余都没换位置)

证明如下:

设左边的行列式为A,右边为B求行列式的式子长这样:

\[\det(A)=|A|=\sum_p(-1)^{\tau(p)}\prod_{i=1}^n a_{i,p_i}
\]

我们对上面的式子做一点细微的修改,把它改成求\(det(B)\)

我们能不能构造一个排列q,使得排列q是利用某种神秘力量,从排列p转化而来,这样就能用a的值来代替b了?

就像这样:

\[\det(B)=\sum_p(-1)^{\tau(p)}\prod_{i=1}^n b_{i,p_i} \ ?\ \sum_q(-1)^{\tau(q)}\prod_{i=1}^n a_{i,q_i}
\]

当然可以。p和q的区别,仅在于第k位和第k+1位被换了位,这样就有\(b_{i,p_i}=a_{i,q_i}\)了!代价是\(\tau(p)=-\tau(q)\)

则有:

\[\det(B)=\sum_p(-1)^{\tau(p)}\prod_{i=1}^n b_{i,p_i} = \sum_q(-1)^{\tau(p)-1}\prod_{i=1}^n a_{i,p_i}=-det(A)
\]

行列式性质2:

行列式的行(列)所有元素等比例变化,则行列式的值也等比例变化:

  • $\begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ k\times a_{i,1} &k\times a_{i,2} &\cdots &k\times a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix} =k\times \begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} &a_{i,2} &\cdots &a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix} $

我们用乘法分配律,即可证明这个性质

行列式性质3:

如果行列式对应矩阵 \(A\) 中有一行(列),是对应 \(2\) 个矩阵 \(B,C\) 中分别的 \(2\) 行(列)所有元素之和。那么有 \(\det(A)=\det(B)+\det(C)\);

  • $\begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ b_{i,1}+c_{i,1} &b_{i,2}+c_{i,2} &\cdots &b_{i,n}+c_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix} = \begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ b_{i,1} &b_{i,2} &\cdots &b_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix} + \begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ c_{i,1} &c_{i,2} &\cdots &c_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix} $

我们可以对每个\(b_i,?+c_i,\)进行乘法分配律,来完成证明

行列式性质4:

  • 由性质1和性质2可以推出:

  • 如果一个矩阵存在两行(列)成比例则 \(\det(A)=0\),则有

    • $\begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} &a_{i,2} &\cdots &a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ k\times a_{i,1} &k\times a_{i,2} &\cdots &k\times a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix}=0 $
  • 证明如下

  • $\begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} &a_{i,2} &\cdots &a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ k\times a_{i,1} &k\times a_{i,2} &\cdots &k\times a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix}=k\times \begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} &a_{i,2} &\cdots &a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} & a_{i,2} &\cdots & a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix} $

  • 设右边的矩阵为\(A'\),由于存在两行相同,我们交换两行后可以得到\(-A'\),且\(-|A'|=|-A'|\)

  • 得\(|A'|=0,|A|=0\times |A'|=0\)

行列式性质5:

  • 把一个矩阵的一行(列)的值全部乘一个常数加到另一行(列)上,行列式值不变。\((6)\)

    • $\begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} &a_{i,2} &\cdots &a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{j,1}+k\times a_{i,1} &a_{j,2}+k\times a_{i,2} &\cdots &a_{j,2}+k\times a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix} = \begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} &a_{i,2} &\cdots &a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{j,1} &a_{j,2} &\cdots &a_{j,2}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix} $

      证明也很简单,根据 \((3)\) 有:
    • $\begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} &a_{i,2} &\cdots &a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{j,1}+k\times a_{i,1} &a_{j,2}+k\times a_{i,2} &\cdots &a_{j,2}+k\times a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix} = \begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} &a_{i,2} &\cdots &a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{j,1} &a_{j,2} &\cdots &a_{j,2}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix}+\begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} &a_{i,2} &\cdots &a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ k\times a_{i,1} &k\times a_{i,2} &\cdots &k\times a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix} $
    • $\because $行列式性质4
    • $\therefore \begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} &a_{i,2} &\cdots &a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{j,1}+k\times a_{i,1} &a_{j,2}+k\times a_{i,2} &\cdots &a_{j,2}+k\times a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix} = \begin{vmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{i,1} &a_{i,2} &\cdots &a_{i,n}\\ \vdots &\vdots &\ddots &\vdots\\ a_{j,1} &a_{j,2} &\cdots &a_{j,2}\\ \vdots &\vdots &\ddots &\vdots\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n}\\ \end{vmatrix}+0 $

行列式性质6:

如图所示:这是一个三角行列式

$\begin{vmatrix} \color{orange}a_{1,1} & \color{green}a_{1,2} &

\color{blue}a_{1,3} & \color{red}\cdots &\color{red}a_{1,n-1} &a_{1,n}\\ 0 &

\color{green}a_{2,2} & \color{blue}a_{2,3} & \color{red}\cdots

&\color{red}a_{2,n-1} &a_{2,n}\\ 0 &0 &\color{blue} a_{3,3} &\color{red}

\cdots &\color{red}a_{3,n-1} &a_{3,n}\\ \color{red}\vdots & \color{red}\vdots

& \color{red}\vdots & \color{red}\ddots &\color{red} \vdots &\vdots\\ 0 &0 &

0 & \color{red}\cdots &\color{red}a_{n-1,n-1} &a_{n,n-1}\\ 0 & 0 & 0 & \cdots

&0 &a_{n,n}\\ \end{vmatrix} $

三角行列式的值非常好求: \(|A|=\displaystyle\prod_{i=1}^na_{i,i}\)

这一条式子很好证明:

我们考虑一个情况,当一个矩阵任意一个位置出现 \(0\),其对行列式的影响非常大。

因为我们考虑公式中 \(\displaystyle\prod_{i=1}^n a_{i,p_i}\) 一项,一旦选到 \(0\) 整个 \(p\) 在

\(\displaystyle \sum_p\) 中就没有贡献了。

在求行列式值时,序列p不指向对角线上元素时,是不是一定会选到0呢?

行列式求值

下面开始进入正题

我会暴力!

直接根据定义计算,行列式求值是 \(\Theta(n\times n!)\) 的。

有了上面七个性质,我们有办法加快运算吗?

消元

我们考虑一个情况,当一个矩阵任意一个位置出现 \(0\),其对行列式的影响非常大。

因为我们考虑公式中 \(\displaystyle\prod_{i=1}^n a_{i,p_i}\) 一项,一旦选到 \(0\) 整个 \(p\) 在

\(\displaystyle \sum_p\) 中就没有贡献了。

下面进入大胆猜想:

我们能不能对原行列式A进行一系列的变换,使得它变成一个三角行列式,像下面这样?

\(A=\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \cdots &a_{1,n}\\\ a_{2,1} &
a_{2,2} & a_{2,3} & \cdots &a_{2,n}\\\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots
&a_{3,n}\\\ \vdots & \vdots & \vdots & \ddots & \vdots\\\ a_{n,1} & a_{n,2} &
a_{n,3} & \cdots &a_{n,n}\\\ \end{bmatrix}\) \(\Rightarrow\) \(\begin{bmatrix} a’_{1,1}
& a‘_{1,2} & a’_{1,3} & \cdots &a‘_{1,n}\\\ 0 & a’_{2,2} & a‘_{2,3} & \cdots
&a_{2,n}\\\ 0 & 0 & a’_{3,3} & \cdots &a‘_{3,n}\\\ \vdots & \vdots &
\vdots & \ddots & \vdots\\\ 0 & 0 & 0 & \cdots &a’_{n,n}\\\ \end{bmatrix}\)

这个三角行列式,怎么和高斯消元,完成加减消元时的矩阵很像?

我们能不能像高斯消元中加减消元一样,利用行列式第\(i\)行的信息,把第\(i+1\)到\(n\)行中\(a[][i]\)变为0

当然可以!

代码长这样:

double sol()
{
double res=1;
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;++j)
{
double div=a[j][i]/a[i][i];
for(int k=i;k<=n;++k)
{
a[j][k]=(a[j][k]-div*a[i][k]);
}
}
}
for(int i=1;i<=n;i++) res*=a[i][i];
return res;
}

但是,此题要求你取模,模的数甚至不是质数?还乘不了逆元?

出现了一点小问题

我们可以把除or乘逆元,换成辗转相除?像这样:

\[\begin{vmatrix}18 & 5 & 1 \\12 & 2 &3 \\4& 2 & 1\end{vmatrix}=-\begin{vmatrix}12 & 2 &3 \\18 & 5 & 1 \\4& 2 & 1\end{vmatrix}=-\begin{vmatrix}12 & 2 &3 \\6 & 3 & -2 \\4& 2 & 1\end{vmatrix}=\begin{vmatrix}6 & 3 & -2 \\12 & 2 &3 \\4& 2 & 1\end{vmatrix}=\begin{vmatrix}6 & 3 & -2 \\0 & -4 &-1 \\4& 2 & 1\end{vmatrix}
\]

我们成功在\(a[2][1]\)处制造了一个0出来!!

通过这样的方式,我们就可以在p不为质数的时候,把这个行列式安全地化为三角行列式

消元操作是 \(\Theta(n^3)\) 的,辗转相除法是 \(\Theta(\log p)\)的,因为辗转相除和消元每次必然使得数变小,势能只会减少,所以这个是均摊到 \(\Theta(n^2)\) 的,最终复杂度为 \(\Theta(n^2\log
n+n^3)\)。

代码

#include<bits/stdc++.h>

#define INL inline
#define ll long long using namespace std; const int N=605; int n,a[N][N],MOD; INL int read()
{
int x=0,w=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x*w;
} INL int sol()
{
int res=1,w=1;
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;++j)
{
while(a[i][i])
{
int div=a[j][i]/a[i][i];
for(int k=i;k<=n;++k)
{
a[j][k]=(a[j][k]-1ll*div*a[i][k]%MOD+MOD)%MOD;
}
swap(a[i],a[j]);w=-w;
}//对第 i 行和第 j 行做辗转相减。
swap(a[i],a[j]);w=-w;
}
}
for(int i=1;i<=n;i++)res=1ll*a[i][i]*res%MOD;
res=1ll*w*res;
return (res+MOD)%MOD;
} int main()
{
n=read(),MOD=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=read();
int ans=sol();printf("%d\n",ans);
return 0;
}

洛谷P7112 行列式求值的更多相关文章

  1. 洛谷 P1981 表达式求值

    P1981 表达式求值 题目描述 给定一个只包含加法和乘法的算术表达式,请你编程计算表达式的值. 输入输出格式 输入格式: 输入文件为 expr.in. 输入仅有一行,为需要你计算的表达式,表达式中只 ...

  2. 题解-洛谷P1981 表达式求值(模拟+处理优先级的递归)

    https://www.luogu.org/problemnew/show/P1981 (原题链接) 显然乘法的优先级高与加法,因此碰到乘号就要优先把一连串与乘号相连的数算出,很容易想到递归.可用普通 ...

  3. 洛谷P1981 表达式求值 题解 栈/中缀转后缀

    题目链接:https://www.luogu.org/problem/P1981 这道题目就是一道简化的中缀转后缀,因为这里比较简单,只有加号(+)和乘号(*),所以我们只需要开一个存放数值的栈就可以 ...

  4. 洛谷 P1981 表达式求值(模拟)

    嗯... 题目链接:https://www.luogu.org/problem/P1981 这道题其实是数组模拟栈.首先处理乘法:注意从后往前处理,处理后归零.然后把数都加起来即可. AC代码: #i ...

  5. 洛谷p1981 表达式求值

    #include <iostream> #include <cstdio> #include <cstring> using namespace std; char ...

  6. 高斯消元与行列式求值 part1

    两道模板题,思路与算法却是相当经典. 先说最开始做的行列式求值,题目大致为给一个10*10的行列式,求其值 具体思路(一开始看到题我的思路): 1.暴算,把每种可能组合试一遍,求逆序数,做相应加减运算 ...

  7. U66785 行列式求值

    二更:把更多的行列式有关内容加了进来(%%%%%Jelly Goat奆佬) 题目描述 给你一个N(n≤10n\leq 10n≤10)阶行列式,请计算出它的值 输入输出格式 输入格式: 第一行有一个整数 ...

  8. 2019.06.17课件:[洛谷P1310]表达式的值 题解

    P1310 表达式的值 题目描述 给你一个带括号的布尔表达式,其中+表示或操作|,*表示与操作&,先算*再算+.但是待操作的数字(布尔值)不输入. 求能使最终整个式子的值为0的方案数. 题外话 ...

  9. 基于上三角变换或基于DFS的行(列)展开的n阶行列式求值算法分析及性能评估

    进入大一新学期,看完<线性代数>前几节后,笔者有了用计算机实现行列式运算的想法.这样做的目的,一是巩固自己对相关概念的理解,二是通过独立设计算法练手,三是希望通过图表直观地展现涉及的两种算 ...

随机推荐

  1. bat-注册表

    注册表 注册表就像于是配置文件 linux下一切皆文件,windows下一切皆注册表 注册表(各种配置文件:系统设置.用户设置.软件的配置) HKEY_CLASSES_ROOT     超级管理员.系 ...

  2. 用 PyQt5 快速构建一个简单的 GUI 应用

    1. 介绍 Python GUI 常用的 3 种框架是:Tkinter.wxpython.PyQt5 PyQt5 基于 Qt,是 Python 和 Qt 的结合体,可以用 Python 语言编写跨平台 ...

  3. BigDecimal加减乘除及setScale的用法小结

    Bigdecimal初始化: BigDecimal num = new BigDecimal(2.225667);//这种写法不允许,会造成精度损失. BigDecimal num = new Big ...

  4. NTT 学习笔记

    引入 \(\tt NTT\) 和 \(\tt FFT\) 有什么不一样呢? 就是 \(\tt NTT\) 是可以用来取模的,而且没有复数带来的精度误差. 最最重要的是据说 \(\tt NTT\) 常数 ...

  5. HMS Core 机器学习服务打造同传翻译新“声”态,AI让国际交流更顺畅

    2022年6月,HMS Core机器学习服务面向开发者提供一项全新的开放能力--同声传译,通过AI语音技术减少资源成本,加强沟通交流,旨在帮助开发者制作丰富多样的同声传译应用. HMS Core同声传 ...

  6. 一切皆为字节和字节输出流_OutputStream类&FileOutputStream类介绍

    一切皆为字节 一切文件数据(文本.图片.视频等)在存储时,都是以二进制数字的形式保存,都一个一个的字节,那么传输时一样如此.所以,字节流可以传输任意文件数据.在操作流的时候,我们要时刻明确,无论使用什 ...

  7. Vite+TS带你搭建一个属于自己的Vue3组件库

    theme: nico 前言 随着前端技术的发展,业界涌现出了许多的UI组件库.例如我们熟知的ElementUI,Vant,AntDesign等等.但是作为一个前端开发者,你知道一个UI组件库是如何被 ...

  8. 在.NET 6.0中配置WebHostBuilder

    大家好,我是张飞洪,感谢您的阅读,我会不定期和你分享学习心得,希望我的文章能成为你成长路上的垫脚石,让我们一起精进. 在阅读第4章"使用Kestrel配置和定制HTTPS"时,您可 ...

  9. Rust 从入门到精通03-helloworld

    安装完成 Rust 之后,我们可以编写 Rust 的 Hello Word.这里介绍两种方式,一种是rust原生方式,一种是利用 cargo 工具(重要) 1.rustc 方式 1.1 创建项目目录 ...

  10. 5.6 NOI模拟

    \(5.6\ NOI\)模拟 明天就母亲节了,给家里打了个电话(\(lj\ hsez\)断我电话的电,在宿舍打不了,只能用教练手机打了) 其实我不是很能看到自己的\(future,\)甚至看不到高三的 ...