X问题

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 3295    Accepted Submission(s): 1068

Problem Description
求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)。
 
Input
输入数据的第一行为一个正整数T,表示有T组測试数据。每组測试数据的第一行为两个正整数N,M (0 < N <= 1000,000,000 , 0 < M <= 10),表示X小于等于N。数组a和b中各有M个元素。

接下来两行。每行各有M个正整数。分别为a和b中的元素。

 
Output
相应每一组输入,在独立一行中输出一个正整数,表示满足条件的X的个数。
 
Sample Input
3
10 3
1 2 3
0 1 2
100 7
3 4 5 6 7 8 9
1 2 3 4 5 6 7
10000 10
1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9
 
Sample Output
1
0
3
 给出m组数,每一组代表x%ai = bi 。

求解x在n的范围内的数量。由于全部的ai不是互质的,所以不能直接用中国剩余定理,可是能够採用http://blog.csdn.net/winddreams/article/details/38425477

来处理,最后变成一个等式。求解出最小的正整数x(对于a*x + b*y = c 的等式,x的每次增长的是 b/gad(a,b) ),之后仅仅要推断在n以内出现的次数就能够了。
 
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define LL __int64
LL t , n , m , d , x , y , i , bb , aa , flag ;
void gcd(LL a,LL b)
{
if(b == 0)
{
d = a ; x = 1 ; y = 0 ;
}
else
{
gcd(b,a%b);
swap(x,y);
x = -x ; y = -y ;
y += (a/b)*x ;
}
return ;
}
LL a[30] , b[30] ; int main()
{
scanf("%I64d", &t);
while(t--)
{
scanf("%I64d %I64d", &n, &m);
for(i = 0 ; i < m ; i++)
scanf("%I64d", &a[i]);
for(i = 0 ; i < m ; i++)
scanf("%I64d", &b[i]);
aa = a[0] ;
bb = b[0] ;
flag = 1 ;
for(i = 1 ; i < m ; i++)
{
gcd(aa,a[i]);
if( (b[i]-bb)%d != 0 )
flag = 0 ;
if( flag )
{
x = (b[i]-bb)/d*x ;
y = a[i] / d ;
x = ( x%y + y )%y ;
bb = bb + x * aa ;
aa = aa*a[i]/d ;
}
}
gcd(1,aa);
if( bb%d != 0 )
flag = 0 ;
if( flag )
{
x = ( bb/d )*x ;
y = aa / d ;
x = (x % y + y) % y ;
}
if( flag == 0 || x > n )
printf("0\n");
else
{
if( !x )
printf("%I64d\n", (n-x)/y );
else
printf("%I64d\n", (n-x)/y+1 );
}
}
return 0;
}

hdu1573X问题(不互素的中国剩余定理)的更多相关文章

  1. hdu_1573 X问题(不互素的中国剩余定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others)    Me ...

  2. hdu_1370Biorhythms(互素的中国剩余定理)

    Biorhythms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  3. 数论F - Strange Way to Express Integers(不互素的的中国剩余定理)

    F - Strange Way to Express Integers Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format: ...

  4. POJ 2891 中国剩余定理(不互素)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 17877 ...

  5. hdu 3579 Hello Kiki【中国剩余定理】(模数不要求互素)(模板题)

    <题目链接> 题目大意: 给你一些模数和余数,让你求出满足这些要求的最小的数的值. 解题分析: 中国剩余定理(模数不一定互质)模板题 #include<stdio.h> usi ...

  6. hdu1573-X问题-(扩展欧几里得定理+中国剩余定理)

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  8. 中国剩余定理(Chinese Remainder Theorem)

    我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \tim ...

  9. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

随机推荐

  1. maven:安装m2eclipse插件

    一.安装maven 1.下载maven:http://pan.baidu.com/s/1hqIbx6s 2.解压并配置path路径(直接替换最新的maven包,即可升级) 3.测试 二.安装m2ecl ...

  2. 利用PHP/MYSQL实现的简易微型博客(转)

    数据库:ly_php_base 表:ly_micro_blog(仅仅有一个表)字段:id,title,date,content,hits 文件: 文件 描述 default.php 默认主页.显示博文 ...

  3. (转)SQL Server 触发器

    SQL Server 触发器 触发器是一种特殊类型的存储过程,它不同于之前的我们介绍的存储过程.触发器主要是通过事件进行触发被自动调用执行的.而存储过程可以通过存储过程的名称被调用. Ø 什么是触发器 ...

  4. [canvas]通过动态生成像素点做绚丽效果

    本例中的粒子就是实实在在的像素,由js代码在canvas上动态生成的像素点!这些像素点通过一个运动方法有规律地动了起来.透过这个思路,我们可以想到很多很炫的效果,但是这个性能有待考察.实验证明,动态控 ...

  5. 进阶笔记(2)——JavaScript语言精碎

    正则       /     正则表达式      / ^   表示字符串开始 (?:...)   表示一个非捕获型分组(没多大意义) 后缀 ? 表示匹配 0 或 1次 ( ... )   表示捕获型 ...

  6. 2、Khala的安装

    于2016年3月24日更新: 一.安装: 1.从github库下载源码https://github.com/moyangvip/khala 2.Khala采用CMake为build system,安装 ...

  7. poj3159 Candies(差分约束)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Candies Time Limit: 1500MS   Memory Limit ...

  8. UVALive3516Exploring Pyramids(dp)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 题目意思:有一棵多叉树,每个结点的子节点有左右之分(即要按照顺序查找),从跟结点开 ...

  9. java学会需要掌握的知识(来源网上。。)

    Java就业指导 2016-03-22 骆昊 程序人生 点击上方"程序人生"关注我们 想要成为合格的Java程序员或工程师到底需要具备哪些专业技能,面试者在面试之前到底需要准备哪些 ...

  10. apche commons项目简介

    1.apche commons项目封装了日常开发中经常使用的功能,如io, String等. http://commons.apache.org/ Apache Commons项目的由三部分组成: T ...