题目:[NOIP1999]拦截导弹

问题编号:217

题目描述

某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

输入格式

输入数据为两行,
第一行为导弹的数目N(n<=1000)
第二行导弹依次飞来的高度,所有高度值均为不大于30000的正整数。

输出格式

输出只有一行是这套系统最多能拦截的导弹数和要拦截所有导弹最少要配备这种导弹拦截系统的套数。两个数据之间用一个空格隔开.

样例输入

样例输出

三维状态图像

题目地址

题意:

见上。

思路:

首先说容易想到的o(n^2)的算法。dp[i]表示以第i个导弹结尾的最长非递增子序列。

那么dp[i]=max(dp[j]+1).bom[j]>=bom[i]。j<i。bom[i]表示第i个导弹的高度。

然后遍历dp[]找最大值即可。

对于拦截的所有导弹的最少系统数。贪心思想。能拦截就用最小射程的系统拦截。不能拦就新开一个系统。

考虑到导弹的射程满足单调性。可以二分查找。详细见代码:

#include <iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[1010],hei[1010],bom[1010],cnt;
void addf(int h)
{
int l,r,mid,ans=-1;
l=0,r=cnt-1;
while(l<=r)
{
mid=(l+r)>>1;
if(hei[mid]>=h)
ans=mid,r=mid-1;
else
l=mid+1;
}
if(ans==-1)
hei[cnt++]=h;
else
hei[ans]=h;
}
int main()
{
int i,j,n,ans; while(~scanf("%d",&n))
{
cnt=0;
for(i=1;i<=n;i++)
{
scanf("%d",bom+i);
addf(bom[i]);
}
dp[1]=ans=1;
for(i=2;i<=n;i++)
{
dp[i]=1;
for(j=1;j<i;j++)
if(bom[j]>=bom[i])
dp[i]=max(dp[i],dp[j]+1);
}
for(i=2;i<=n;i++)
ans=max(ans,dp[i]);
printf("%d %d\n",ans,cnt);
}
return 0;
}

对于o(n*log(n))的算法。最少系统数仍然二分。对于一个系统可以拦截最多导弹数要换一种思路。

我们用dp[i]表示拦截导弹数为i系统的最大射程。对于bom[i]我们找到最大的j使得dp[j]>=bom[i]。那么

dp[j+1]=max(dp[j+1],bom[i])。感觉有点贪心的思想。同样的长度使结尾最大以给后面留更多的选择余地。

详细见代码:

#include <iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[1010],hei[1010],bom[1010],cnt,len;
void addf(int h)
{
int l,r,mid,ans=-1;
l=0,r=cnt-1;
while(l<=r)
{
mid=(l+r)>>1;
if(hei[mid]>=h)
ans=mid,r=mid-1;
else
l=mid+1;
}
if(ans==-1)
hei[cnt++]=h;
else
hei[ans]=h;
}
void binf(int x)
{
int l,r,mid,ans=-1;
l=1,r=len;
while(l<=r)
{
mid=(l+r)>>1;
if(dp[mid]>=x)
{
ans=mid;
l=mid+1;
}
else
r=mid-1;
}
if(ans>0)
{
dp[ans+1]=max(dp[ans+1],x);
if(ans+1>len)
len++;
}
else if(r<l)
dp[1]=x;
}
int main()
{
int i,n; while(~scanf("%d",&n))
{
cnt=0;
for(i=1;i<=n;i++)
{
scanf("%d",bom+i);
addf(bom[i]);
}
dp[1]=bom[1];
len=1;
for(i=2;i<=n;i++)
binf(bom[i]);
printf("%d %d\n",len,cnt);
}
return 0;
}

题目:[NOIP1999]拦截导弹(最长非递增子序列DP) O(n^2)和O(n*log(n))的两种做法的更多相关文章

  1. 动态规划-最长单调递增子序列(dp)

    最长单调递增子序列 解题思想:动态规划 1.解法1(n2) 状态:d[i] = 长度为i+1的递增子序列的长度 状态转移方程:dp[i] = max(dp[j]+1, dp[i]); 分析:最开始把d ...

  2. 588. [NOIP1999] 拦截导弹

    588. [NOIP1999] 拦截导弹 ★  输入文件:missile.in  输出文件:missile.out  简单对比 时间限制:1 s 内存限制:128 MB 题目描述 某国为了防御敌国的导 ...

  3. HDU 5532 Almost Sorted Array (最长非递减子序列)

    题目链接 Problem Description We are all familiar with sorting algorithms: quick sort, merge sort, heap s ...

  4. HDU 6357.Hills And Valleys-字符串非严格递增子序列(LIS最长非下降子序列)+动态规划(区间翻转l,r找最长非递减子序列),好题哇 (2018 Multi-University Training Contest 5 1008)

    6357. Hills And Valleys 自己感觉这是个好题,应该是经典题目,所以半路选手补了这道字符串的动态规划题目. 题意就是给你一个串,翻转任意区间一次,求最长的非下降子序列. 一看题面写 ...

  5. HDURevenge of Segment Tree(第二长的递增子序列)

    HDURevenge of Segment Tree(第二长的递增子序列) 题目链接 题目大意:这题是求第二长的递增子序列. 解题思路:用n^2的算法来求LIS,可是这里还要记录一下最长的那个序列是否 ...

  6. 最长非降子序列的O(n^2)解法

    这次我们来讲解一个叫做"最长非下降子序列"的问题及他的O(n^2)解法. 首先我们来描述一下什么是"最长非下降子序列". 给你一个长度为n的数组a,在数组a中顺 ...

  7. [LeetCode] Longest Uncommon Subsequence I 最长非共同子序列之一

    Given a group of two strings, you need to find the longest uncommon subsequence of this group of two ...

  8. [ACM_动态规划] UVA 12511 Virus [最长公共递增子序列 LCIS 动态规划]

      Virus  We have a log file, which is a sequence of recorded events. Naturally, the timestamps are s ...

  9. Educational Codeforces Round 97 (Rated for Div. 2) E. Make It Increasing(最长非下降子序列)

    题目链接:https://codeforces.com/contest/1437/problem/E 题意 给出一个大小为 \(n\) 的数组 \(a\) 和一个下标数组 \(b\),每次操作可以选择 ...

随机推荐

  1. MyEclipse Web Project导入Eclipse Dynamic Web Project,无法部署到tomcat问 题

    做作业遇到一个小问题,将MyEclipse Web Project导入到Eclipse中开发.在部署到tomcat时,发现无法发布这个项目. 问题分析: MyEclipse Web Project被识 ...

  2. (转)SVN源码管理(上&下)

    原文地址:http://www.cnblogs.com/IPrograming/archive/2012/12/15/SVN_1.html 使用SVN进行源码管理(上) 在原来的项目中使用的源码管理工 ...

  3. Android Studio中常用设置与快捷键

    常用设置: 1.Tab不用4个空格Code Style->Java->Tabs and Indents->Use tab characterCode Style->Genera ...

  4. errno.h 错误码描述.

    描述:一般说的Linux源码的目录,默认是基于 /usr/include/ 的. 使用 char *strerror(int errnum); 函数打印错误代码的描述.我简单对比了一下,发现描述大体一 ...

  5. 【转】深入理解Java内存模型(一)——基础

    并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来交换信息.在命令式编程中,线程之间的通信 ...

  6. ajaxfileupload

                 }         }                              setTimeout(                              }, s. ...

  7. java学习笔记(10) —— ActionContext、ServletActionContext、ServletRequestAware用法

    核心思想 1.ActionContext HttpServletRequest getAttribute setAttribute ActionContext get put //ActionCont ...

  8. [转] JS运算符 &&和|| 及其优先级

    第一.&& (逻辑与)运算,看一个简单的例子: var a = 1 && 2 && 3; var b = 0 && 1 &&am ...

  9. phpmyadmin密码字段加密方法

    UPDATE member SET password=md5('password')

  10. RSA 加密

    iOS开发教程-iOS中的RSA加解密 在移动应用开发中常常遇到数据传输安全性的问题,尤其是在账户安全以及支付场景中的订单数据.或支付信息的传输中,正规的公司一定会要求对数据进行加密,当然有创业初期的 ...