总时间限制: 
1000ms 
内存限制: 
65536kB
描述
把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
输入
第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。
输出
对输入的每组数据M和N,用一行输出相应的K。
样例输入
1
7 3
样例输出
8
    找递推关系:设f(m,n)表示m个苹果放入n个盘子,若n>m,则至少有n-m个空盘子,f(m,n)=f(m,m)
    若n<=m 有两种情况,一是有一个空盘子f(m,n)=f(m,n-1)
    二是所有盘子都放了苹果,等于把每个盘子都拿掉一个苹果后的值f(m,n)=f(m-n,n);
    两种情况加一起就是f(m,n)=f(m,n-1)+f(m-n,n);
        递归终止条件一是m=0,二是n=1;
 /*
解题分析:
设f(m,n) 为m个苹果,n个盘子的放法数目,则先对n作讨论,
当n>m:必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即if(n>m) f(m,n) = f(m,m)  
当n<=m:不同的放法可以分成两类:
1、有至少一个盘子空着,即相当于f(m,n) = f(m,n-1);
2、所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即f(m,n) = f(m-n,n).
而总的放苹果的放法数目等于两者的和,即 f(m,n) =f(m,n-1)+f(m-n,n)
递归出口条件说明:
当n=1时,所有苹果都必须放在一个盘子里,所以返回1;
当没有苹果可放时,定义为1种放法;
递归的两条路,第一条n会逐渐减少,终会到达出口n==1;
第二条m会逐渐减少,因为n>m时,我们会return f(m,m) 所以终会到达出口m==0.
*/
#include<stdio.h> int fun(int m,int n) //m个苹果放在n个盘子中共有几种方法
{
if(m==||n==) //因为我们总是让m>=n来求解的,所以m-n>=0,所以让m=0时候结束,如果改为m=1,
return ; //则可能出现m-n=0的情况从而不能得到正确解
if(n>m)
return fun(m,m);
else
return fun(m,n-)+fun(m-n,n);
} int main()
{
int T,m,n;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&m,&n);
printf("%d\n",fun(m,n));
}
}
欢迎来我的个人网站:http://www.rxwcv.cn

POJ——放苹果的更多相关文章

  1. POJ 放苹果问题(递归)

    首先我们想象有一个函数count  f(m,n)可以把m个苹果放到n个盘子中. 根据 n 和 m 的关系可以进一步分析: 特殊的m <=1|| n <= 1时只有一种方法: 当 m < ...

  2. POJ 1664 放苹果 (递推思想)

    原题链接:http://poj.org/problem?id=1664 思路:苹果m个,盘子n个.假设 f ( m , n ) 代表 m 个苹果,n个盘子有 f ( m , n ) 种放法. 根据 n ...

  3. POJ 1664 放苹果

    放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24985   Accepted: 15908 Description ...

  4. poj 1664 放苹果(递推)

    题目链接:http://poj.org/problem? id=1664 放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions ...

  5. poj 1664 放苹果 递归

    题目链接: http://poj.org/problem?id=1664 题目描述: 有n个苹果,m个盒子,盒子和苹果都没有顺序,盒子可以为空,问:有多少种放置方式? 解题思路: 当前有n个苹果,m个 ...

  6. POJ --- 1164 放苹果

    放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24947   Accepted: 15887 Description ...

  7. poj 1664放苹果(递归)

    放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37377   Accepted: 23016 Description ...

  8. poj 1664 放苹果 (划分数)

    题意:中文题目,不解释... 题解: 第一种方法是暴力深搜:枚举盘子1~n放苹果数量的所有情况,不需要剪枝:将每次枚举的情况,即每个盘的苹果数量,以字典序排序,然后存进set里 以此去重像" ...

  9. poj 1664 放苹果(dfs)

    放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30284   Accepted: 19098 Description ...

随机推荐

  1. Inno Setup 插件 CallbackCtrl V1.1 (回调函数插件)

    原文 http://restools.hanzify.org/article.asp?id=101 VC 重现 InnoCallback 的功能. Version 1.1修正在某些 Windows 平 ...

  2. Inno Setup:卸载时判断要调用的dll是否存在

    原文 http://zwkufo.blog.163.com/blog/static/2588251201072581947474/ [Code]function SuiteRemovedAlert2: ...

  3. IP地址分类与识别错误

    //描述:  请解析IP地址和对应的掩码,进行分类识别.要求按照A/B/C/D/E类地址归类,不合法的地址和掩码单独归类. //所有的IP地址划分为 A,B,C,D,E五类 //A类地址1.0.0.0 ...

  4. 栈ADT的链表实现

    /* 栈ADT链表实现的类型声明 */ struct Node; typedef struct Ndoe *PtrToNode; typedef PtrToNode Stack; struct Nod ...

  5. 关于各种排列(dfs)

    代码一:数字有重复: #include <cstdio> ],arr[]={,,,}; void dfs(int v){ if(v >= n){ ;i<n;i++) print ...

  6. skynet-源码分析1:目录下的文件整理

    skynet是c和lua结合的一个开源游戏引擎,是云风所写,对我等屌丝来说,是很好的参考 先整理一下文件结构,然后再慢慢深入 主目录下有10个目录,105个文件, 具体包含的情况,我简单画了个图,明天 ...

  7. C# 中的委托和事件[转自张子扬]

    文中代码在VS2005下通过,由于VS2003(.Net Framework 1.1)不支持隐式的委托变量,所以如果在一个接受委托类型的位置直接赋予方法名,在VS2003下会报错,解决办法是显式的创建 ...

  8. [LeetCode] Search in Rotated Sorted Array [35]

    题目 Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 m ...

  9. twitter 监控登陆活动

    http://vicenteaguileradiaz.com/download/tinfoleak/tinfoleak-1.2.tar.gz

  10. C# 对XML基本操作总结

    C# 对XML基本操作包括读取节点的数据,添加节点.读取节点属性,修改节点属性等.具体如下: XML文件:文件在MyDocument文件夹下 <?xml version="1.0&qu ...