cf442B Andrey and Problem
2 seconds
256 megabytes
standard input
standard output
Andrey needs one more problem to conduct a programming contest. He has n friends who are always willing to help. He can ask some of them to come up with a contest problem. Andrey knows one value for each of his fiends — the probability that this friend will come up with a problem if Andrey asks him.
Help Andrey choose people to ask. As he needs only one problem, Andrey is going to be really upset if no one comes up with a problem or if he gets more than one problem from his friends. You need to choose such a set of people that maximizes the chances of Andrey not getting upset.
The first line contains a single integer n (1 ≤ n ≤ 100) — the number of Andrey's friends. The second line contains n real numbers pi(0.0 ≤ pi ≤ 1.0) — the probability that the i-th friend can come up with a problem. The probabilities are given with at most 6 digits after decimal point.
Print a single real number — the probability that Andrey won't get upset at the optimal choice of friends. The answer will be considered valid if it differs from the correct one by at most 10 - 9.
4
0.1 0.2 0.3 0.8
0.800000000000
2
0.1 0.2
0.260000000000
In the first sample the best strategy for Andrey is to ask only one of his friends, the most reliable one.
In the second sample the best strategy for Andrey is to ask all of his friends to come up with a problem. Then the probability that he will get exactly one problem is 0.1·0.8 + 0.9·0.2 = 0.26.
我吓坏了……div1就过了一道B题居然rating从1700+飞到1800
就是有n个数,第i个数有a[i]的几率出现1,有(1-a[i])的几率出现0。求任意取数使和为1的概率最大
其实这算法没有严密的证明,姑且算是贪心+dp
首先a数组从大到小排序,因为直觉上感觉a[i]越大越容易凑出1,这样取的数最少,应该概率最大(我说过很不严密,勿喷)
然后dp
f[i][0]表示前i个数取到和为0的概率,f[i][1]表示前i个数取到和为1的概率
f[i][0]只从f[i-1][0]转移过来,f[i][1]要从f[i-1][0]和f[i-1][1]转移过来
具体看代码,很短
#include<cstdio>
#include<algorithm>
using namespace std;
int n;
double a[1001],f[1001][2],ans;
bool cmp(double a,double b){return a>b;}
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)scanf("%lf",a+i);
sort(a+1,a+n+1,cmp);
f[0][0]=1;
for (int i=1;i<=n;i++)
{
f[i][0]=f[i-1][0]*(1-a[i]);
f[i][1]=f[i-1][0]*a[i]+f[i-1][1]*(1-a[i]);
}
for (int i=1;i<=n;i++)
ans=max(ans,f[i][1]);
printf("%.12lf",ans);
}
cf442B Andrey and Problem的更多相关文章
- [CF442B] Andrey and Problem (概率dp)
题目链接:http://codeforces.com/problemset/problem/442/B 题目大意:有n个人,第i个人出一道题的概率是pi,现在选出一个子集,使得这些人恰好出一个题的概率 ...
- codeforces 442B B. Andrey and Problem(贪心)
题目链接: B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input ...
- codeforces#253 D - Andrey and Problem里的数学知识
这道题是这种,给主人公一堆事件的成功概率,他仅仅想恰好成功一件. 于是,问题来了,他要选择哪些事件去做,才干使他的想法实现的概率最大. 我的第一个想法是枚举,枚举的话我想到用dfs,但是认为太麻烦. ...
- Codeforces Round #253 (Div. 1) B. Andrey and Problem
B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- Codeforces 442B Andrey and Problem(贪婪)
题目链接:Codeforces 442B Andrey and Problem 题目大意:Andrey有一个问题,想要朋友们为自己出一道题,如今他有n个朋友.每一个朋友想出题目的概率为pi,可是他能够 ...
- Andrey and Problem
B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- Codeforces 442B. Andrey and Problem
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- 【codeforces 442B】 Andrey and Problem
http://codeforces.com/problemset/problem/442/B (题目链接) 题意 n个人,每个人有p[i]的概率出一道题.问如何选择其中s个人使得这些人正好只出1道题的 ...
- Codeforces Round #253 (Div. 2) D. Andrey and Problem
关于证明可以参考题解http://codeforces.com/blog/entry/12739 就是将概率从大到小排序然后,然后从大到小计算概率 #include <iostream> ...
随机推荐
- 小结OC中Retain cycle(循环引用)
retain cycle 的产生 说到retain cycle,首先要提一下Objective-C的内存管理机制. 作为C语言的超集,Objective-C延续了C语言中手动管理内存的方式,但是区别于 ...
- JS浏览器对象-window对象
代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title ...
- (转)基于企业级证书的IOS应用打包升级功能介绍
IOS应用程序升级流程介绍:IOS手机端应用程序需要升级时,打开服务器端html文件(本文为ucab.html文件)->点击在线安装->打开plist文件(本文中为ucab.plist文件 ...
- SUBTOTAL 函数与所在行
SUBTOTAL 函数与所在行 设计要点:数据汇总.隐藏.筛选 阿金:给你推荐一个函数SUBTOTAL. 秀秀:又是函数!俺不喜欢. 阿金:虽然你不喜欢函数,但是你也离不了啊,比如汇总. 秀秀:那倒是 ...
- javascript中的原型理解总结
经过几天研究查找资料,对原型终于有点理解了,今天就做下总结,不对之处,希望各位能够提出. 1.每一个Javascript对象(null除外)都和另一个对象相关联,“另一个”对象就是我们今天所要总结的原 ...
- Java基础知识强化54:经典排序之插入排序(InsertSort)
1. 插入排序原理图: 算法步骤: 1)将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列. 2)从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位 ...
- Windows Bridge for iOS: Let’s open this up
(原文翻译过来的,原文链接http://blogs.windows.com/buildingapps/2015/08/06/windows-bridge-for-ios-lets-open-this- ...
- PropertyGird( 属性表格) 组件
本节课重点了解 EasyUI 中 PropertyGird(属性表格)组件的使用方法,这个组件依赖于 DataGrid(数据表格)组件. 一. 加载方式 //class 加载方式<table i ...
- django: urlconfig
django 的 url 配置主要在 urls.py 中进行 urlconfig 中对 url 的处理方式主要在: 一 视图处理方式 如 上文 例子所示: url(r'^blog/index/$', ...
- css3圈圈进度条
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...