为什么写这道题还是因为昨天多校的第二题,是道图论,HDU 4612。

当时拿到题目的时候就知道是道模版题,但是苦于图论太弱。模版都太水,居然找不到。

虽然比赛的时候最后水过了,但是那个模版看的还是一知半解,主要还是对于无向图缩点不了解。

所以今天特意找了道求无向图边双连通分量,然后缩点的题学习一下,这道题的缩点和昨天那道差不多,唯一的区别就是这是无重边的,那题是有重边的。

先搞掉这个,下午把有重边的缩点搞一下。

这里给出一些概念。具体可以到神牛博客看一下。

边连通度:使一个子图不连通的需要删除掉的最小边数,就是该图的边连通度。

桥(割边) :删除某条边时,该图不再连通,那么这条边就是该图的桥(割边)。

边双连通分量:边连通度大于等于2的子图称为边连通分量。

一个边连通分量里面的任意两点,都有2条或者2条以上的路可以互相到达。

这道题的题意,给出N个点M条边,都是无向的。

然后叫你求,最少增加多少条边,可以是的整个图成为一个边双联通分量 。

思路:求出所有的边连通分量,设数量为cnt,然后将一个边连通分量中的点缩成一个块,然后重新建图,这样我们就得到了一棵节点数为cnt ,边数为cnt - 1,的树。

该树上的所有边都是桥。

然后要使得这个图成为一个边连通分量,那么只需将所有的叶子节点连起来即可。

所有最后的答案就是(叶子节点的个数+ 1) / 2。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <stack>
#include <map>
#include <iomanip>
#define PI acos(-1.0)
#define Max 2505
#define inf 1<<28
#define LL(x) ( x << 1 )
#define RR(x) ( x << 1 | 1 )
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
#define mp(a,b) make_pair(a,b)
#define PII pair<int,int>
using namespace std; inline void RD(int &ret) {
char c;
do {
c = getchar();
} while(c < '0' || c > '9') ;
ret = c - '0';
while((c=getchar()) >= '0' && c <= '9')
ret = ret * 10 + ( c - '0' );
}
int n , m ;
struct kdq{
int e , next ;
}ed[111111] ,bridge[1111] ,reed[11111] ;
int head[1111] ,num ,rehead[11111] ,renum ;
int low[1111] ,dfn[1111] ;
int st[11111] ;
int fa[1111] ;
bool vis[1111] ;
int dp ; //tarjan的层数
int top ;//栈顶
int bridgenum ;//桥的数量
int cnt ;//缩点后联通块的数量
//可以知道,cnt = bridge + 1
//缩点后,重新建图,所有节点都是一个联通块,所有的边都是桥。故有上述结论。
void init(){
mem(rehead , -1) ;
renum = 0 ;
mem(head , -1) ;
num = 0 ;
dp = 0 ;
top = 0 ;
bridgenum = 0 ;
cnt = 0 ;
mem(low ,0) ;
mem(dfn ,0) ;
mem(fa,-1) ;
mem(vis, 0 ) ;
}
void add(int s ,int e){
ed[num].e = e ;
ed[num].next = head[s] ;
head[s] = num ++ ;
}
void readd(int s ,int e){
reed[renum].e = e ;
reed[renum].next = rehead[s] ;
rehead[s] = renum ++ ;
}
/***模版求无向图的双联通分量,缩点,求出桥(无重边)***/
void tarjan(int now ,int faa){
dfn[now] = low[now] = dp ++ ;
st[++ top] = now ;
for (int i = head[now] ; ~i ;i = ed[i].next ){
int e = ed[i].e ;
if(e == faa)continue ;
if(dfn[e] == 0){
tarjan(e ,now) ;
if(low[e] < low[now])low[now] = low[e] ;
if(low[e] > dfn[now]){
bridge[bridgenum].e = now ;//桥
bridge[bridgenum ++].next = e ;
cnt ++ ;
do{
fa[st[top]] = cnt ;//缩点
}while(st[top --] != e) ;
}
}else if(low[now] > dfn[e])low[now] = dfn[e] ;
}
}
/***重新建图***/ void rebuild(){
for (int i = 1 ; i <= n ; i ++ ){
for (int j = head[i] ; ~j ; j = ed[j].next){
readd(fa[i], fa[ed[j].e]) ;
readd(fa[ed[j].e] ,fa[i]) ;
}
}
}
int ans = 0 ;
int root = -1 ;
void dfs(int now ,int faa){
vis[now] = 1 ;
int sum = 0 ;
for(int i = rehead[now] ; ~i ;i = reed[i].next){
int e = reed[i].e ;
if(e == faa)continue ;
if(vis[e])continue ;
sum ++ ;
dfs(e,now) ; }
if(!sum)ans ++ ;
}
void solve(){
ans = 0 ;
rebuild() ;
dfs(root ,-1) ;
if(cnt == 1)puts("0") ;
else
printf("%d\n",(ans + 1) / 2) ;
}
int main() {
while(cin >> n >> m){
init() ;
while(m -- ){
int a , b ;
RD(a) ;RD(b) ;
add(a , b) ;
add(b , a) ;
} for (int i = 1 ;i <= n ;i ++ ){//可以处理不连通的图,如果连通的话,这个循环只进行一次。
if(dfn[i] == 0){
top = dp = 1 ;
tarjan(i , -1) ;
++ cnt ;
for (int j = 1 ; j <= n ;j ++ ){//特殊处理顶点的连通块
if(dfn[j] && fa[j] == -1)fa[j] = cnt ,root = cnt;
}
}
}
solve() ; }
return 0 ;
}

POJ 3352 无向图边双连通分量,缩点,无重边的更多相关文章

  1. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  2. POJ3177 Redundant Paths(边双连通分量+缩点)

    题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...

  3. Expm 9_3 无向图的双连通分量问题

      [问题描述] 给定一个无向图,设计一个算法,判断该图中是否存在关节点,并划分双连通分量. package org.xiu68.exp.exp9; import java.util.Stack; p ...

  4. 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)

    layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...

  5. poj 3177 Redundant Paths(边双连通分量+缩点)

    链接:http://poj.org/problem?id=3177 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任 ...

  6. poj 2942 Knights of the Round Table(无向图的双连通分量+二分图判定)

    #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #includ ...

  7. 图论-桥/割点/双连通分量/缩点/LCA

    基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...

  8. poj3177(边双连通分量+缩点)

    传送门:Redundant Paths 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立 ...

  9. POJ3352 Road Construction 双连通分量+缩点

    Road Construction Description It's almost summer time, and that means that it's almost summer constr ...

随机推荐

  1. 02.Lua的数据类型

    简单认识Lua 百度了一下(偷哈懒就不自己写了) Lua 是一个小巧的脚本语言.是巴西里约热内卢天主教大学(Pontifical Catholic University of Rio de Janei ...

  2. linux 下编译安装php

    系统环境: CentOS 6.5 x86_64 下载 PHP 源码包 # wget http://cn2.php.net/distributions/php-5.5.9.tar.bz2 # tar x ...

  3. python修改txt文件内容

    ①以r模式打开文件并用readlines方法读入列表l中 ②修改相关行,直接用l[n]形式即可 ③关闭文件 ④以w方式打开文件,用writelines方法写入文件(覆盖文件内容) ⑤关闭文件 需要注意 ...

  4. laravel实现第三方登录(qq登录)

    首先composer安装依赖: composer require socialiteproviders/qq 注册服务提供者(同时注释掉原有的Socialite提供者): 'providers' =& ...

  5. 模拟Hibernate动态生成SQL语句

    这里有一个xml配置文件,也就是Hibernate框架中会用到的POJO和数据库的映射文件 <?xml version="1.0" encoding="utf-8& ...

  6. python 3.5 格式化字符串输出

    #!/usr/bin/env python #encoding: utf-8 #.strip('里面可以去掉字符串中两边的字符') name = input('name :').strip(' ') ...

  7. GCD 单例

    + (ThemeManager *)sharedInstance { static   dispatch_once_t   once; //只执行一次 static   ThemeManager   ...

  8. ubuntu apt 命令参数(转)

    apt-get是一条linux命令,适用于deb包管理式的操作系统,主要用于自动从互联网的软件仓库中搜索.安装.升级.卸载软件或操作系统. apt-get update 在修改/etc/apt/sou ...

  9. QEventLoop 的使用两例

    熟悉的陌生人 Qt 是事件驱动的,所以当你用Qt的时候,几乎时时刻刻和 QEventLoop 打交道.,只是你可能没有意识到: QCoreApplicaton::exec() QApplication ...

  10. 哪些产品不用开发原生APP,微信公众号就够了?

    最近一阶段H5技术被推到高峰,很多人认为借助H5就能利用微信公众号取代APP原生应用了,而事实是怎么样的?这里我从产品层做一个客观分析. 一,原生APP总体趋势 要谈APP是否会被微信取代,那么必须回 ...