虽然A掉了但是时间感人啊....

f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数.

丢了第 i 个, 要填满容量为 k 的背包 , 则 ans( i , k ) = ∑ f( i - 1, h ) * g( i + 1 , k - h ) ( 0 <= h <= k )

这样就转化为经典的背包问题了 f( x , k ) = f( x - 1 , k ) + f( x - 1 , k - w( x ) )

时间复杂度是 O( nm ) , 可以过

----------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
 
#define rep(i ,n) for(int i=0; i < n; ++i)
#define Rep(i, n) for(int i=1; i <= n; ++i)
#define clr(x ,c) memset(x, c, sizeof(x))
 
using namespace std;
 
const int maxn = 2005, MOD = 10;
 
int n, m, w[maxn], f[maxn][maxn], g[maxn][maxn];
 
void init() {
cin >> n >> m;
Rep(i, n) scanf("%d", w + i);
clr(f, 0), clr(g, 0);
}
 
void work() {
f[0][0] = g[n + 1][0] = 1;
Rep(i, n) {
for(int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if(j >= w[i]) (f[i][j] += f[i - 1][j - w[i]]) %= MOD;
}
int h = n - i + 1;
   for(int j = 0; j <= m; j++) {
    g[h][j] = g[h + 1][j];
    if(j >= w[h]) (g[h][j] += g[h + 1][j - w[h]]) %= MOD;
   }
}
Rep(i, n) {
   Rep(j, m) {
    int ans = 0;
    rep(k, j + 1) (ans += f[i - 1][k] * g[i + 1][j - k]) %= MOD;
    printf("%d", ans);
   }
   putchar('\n');
}
}
 
int main(){
freopen( "test.in" , "r" , stdin );
init();
work();
return 0;

----------------------------------------------------------------------------------------

2287: 【POJ Challenge】消失之物

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 299  Solved: 166
[Submit][Status][Discuss]

Description

ftiasch 有 N 个物品, 体积分别是 W1W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

 

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1W2, ..., WN, 物品的体积。

Output

 

一个 N × M 的矩阵, Count(i, x)的末位数字。

Sample Input

3 2
1 1 2

Sample Output

11
11
21

HINT

如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。

Source

BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )的更多相关文章

  1. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  2. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  3. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  4. BZOJ2287: 【POJ Challenge】消失之物(背包dp)

    题意 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” ...

  5. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  6. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  7. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  8. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  9. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

随机推荐

  1. POJ 3228Gold Transportation(二分+最大流)

    题目地址:POJ3288 这个题跟之前的一道题混了,感觉是一样的,所以连想都没怎么想就拆点然后求最短路然后二分求最大流了.结果连例子都只是,还一直以为又是哪里手残了..结果看了看例子,手算也确实不正确 ...

  2. 基于RYU控制器(controller)上的simple-switch 的APP做的測试-SDN/OpenFlow

    近期一直在学习RYU控制器,在使用的过程中,发现有下面几方面的长处:RYU控制器全然使用Python语言编写,在理解起来和上手速度上是挺快的:RYU控制器的总体架构清晰明了,在日后有时间我会整理一个关 ...

  3. Java多线程之synchronized(一)

    在上节中已经说过了“非线程安全”是如何出现的,链接如下:http://www.cnblogs.com/chentong/p/5650137.html,那么怎么解决“非线程安全”问题呢,只需要在两个线程 ...

  4. Oracle查询数据中占用空间最大的表

    --第一步,查询istaudit数据库文件ID,文件路径 select file#,name from v$datafile where lower(name) like '%istaudit.dbf ...

  5. HDU 4548 美素数(打表)

    HDU  4548  美素数(打表)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=88159#problem/H 题目 ...

  6. C++日期和时间

    C++ 日期 & 时间 C++ 标准库没有提供所谓的日期类型.C++ 继承了 C 语言用于日期和时间操作的结构和函数.为了使用日期和时间相关的函数和结构,需要在 C++ 程序中引用 <c ...

  7. JS 控制 form是否提交表单

    问题背景:用php删除数据,希望在点击“删除”(button)的时候JS弹出confirm来确认是否删除. 此段代码为php中的form: <form action="?form=de ...

  8. Python之路:Python简介

    Python前世今生 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间他为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言的一种继承 ...

  9. 条码的种类(types of barcode)

    条码基本上分为两大类:一维条码(1D Barcode)及二维条码(2D Barcode). 一维条码(1D Barcode) 所谓一维条码,简单的说就是条码只能横向水平方向列印,其缺点是储存的资料量较 ...

  10. android linearlayout 把控件view置底部(放在页面最下方)

    <LinearLayout android:id="@+id/recLayout" android:layout_width="fill_parent" ...