Shortest Path(思维,dfs)
Shortest Path
There is a path graph G=(V,E)G=(V,E) with nn vertices. Vertices are numbered from 11 to nn and there is an edge with unit length between iiand i + 1i+1 (1 \le i < n)(1≤i<n). To make the graph more interesting, someone adds three more edges to the graph. The length of each new edge is 11.
You are given the graph and several queries about the shortest path between some pairs of vertices.
There are multiple test cases. The first line of input contains an integer TT, indicating the number of test cases. For each test case:
The first line contains two integer nn and mm (1 \le n, m \le 10^5)(1≤n,m≤105) -- the number of vertices and the number of queries. The next line contains 6 integers a_1, b_1, a_2, b_2, a_3, b_3a1,b1,a2,b2,a3,b3 (1 \le a_1,a_2,a_3,b_1,b_2,b_3 \le n)(1≤a1,a2,a3,b1,b2,b3≤n), separated by a space, denoting the new added three edges are (a_1,b_1)(a1,b1), (a_2,b_2)(a2,b2), (a_3,b_3)(a3,b3).
In the next mm lines, each contains two integers s_isi and t_iti (1 \le s_i, t_i \le n)(1≤si,ti≤n), denoting a query.
The sum of values of mm in all test cases doesn't exceed 10^6106.
For each test cases, output an integer S=(\displaystyle\sum_{i=1}^{m} i \cdot z_i) \text{ mod } (10^9 + 7)S=(i=1∑mi⋅zi) mod (109+7), where z_izi is the answer for ii-th query.
1
10 2
2 4 5 7 8 10
1 5
3 1
7
题解:最短路,本来完全暴力的最短路,果断超时,最后听了大神的想法,是求加的那三条边的最短路;让每次给的u,v找u到那三个起点的距离与
d[v]的和与v-u找最小值;还是超时,先放着吧,明天再看;
今天看了下发现自己写的很有问题,哪有那么麻烦,直接dfs下就好了,其实就是个思维题,用图论肯定超了。。。
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<string>
using namespace std;
const int INF=0x3f3f3f3f;
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define P_ printf(" ")
#define mem(x,y) memset(x,y,sizeof(x))
const int MAXN=1e5+;
const int MOD=1e9+;
typedef long long LL;
struct Dot{
int x,y;
};
Dot dot[];
int u,v;
LL ans;
int vis[];
void dfs(int pos,int temp){
if(temp+abs(v-pos)<ans)ans=temp+abs(v-pos);
for(int i=;i<;i++){
if(vis[i])continue;
vis[i]=;
dfs(dot[i].y,temp+abs(pos-dot[i].x)+);
dfs(dot[i].x,temp+abs(pos-dot[i].y)+);
vis[i]=;
}
}
int main(){
int T;
SI(T);
int N,M;
while(T--){
SI(N);SI(M);
for(int i=;i<;i++)SI(dot[i].x),SI(dot[i].y);
LL temp=;
vis[]=vis[]=vis[]=;
for(int i=;i<=M;i++){
SI(u);SI(v);
ans=abs(v-u);
dfs(u,);
temp=(temp+ans*i)%MOD;
}
printf("%lld\n",temp);
}
return ;
}
我的超时代码:先不说超时了,这样情况都没考虑完全,都没考虑过好几条路的情况;再者这样肯定会超时了。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<string>
using namespace std;
const int INF=0x3f3f3f3f;
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define P_ printf(" ")
#define mem(x,y) memset(x,y,sizeof(x))
const int MAXN=1e5+;
const int MOD=1e9+;
int head[MAXN<<];
int vis[MAXN];
int n,m;
int d1[MAXN],d2[MAXN],d3[MAXN];
int d[MAXN];
struct Node{
int from,to,next;
};
Node dt[MAXN<<];
int edgnum;
void add(int u,int v){
dt[edgnum].from=u;dt[edgnum].to=v;
dt[edgnum].next=head[u];
head[u]=edgnum++;
}
void dijkscra(int u){
mem(vis,);
mem(d,INF);
d[u]=;
while(true){
int k=-;
for(int i=;i<=n;i++){
if(!vis[i])if(k==-||d[i]<d[k])k=i;
}
if(k==-)break;
vis[k]=;
for(int i=head[k];i!=-;i=dt[i].next){
int u=dt[i].from,v=dt[i].to;
//printf("%d %d\n",u,v);
d[v]=min(d[v],d[u]+);
}
}
} /*
int temp;
void dfs(int u,int v,int t){
if(t>n)return;
if(u==v){
temp=min(temp,t);
return;
}
for(int i=head[u];i!=-1;i=dt[i].next){
dfs(dt[i].to,v,t+1);
}
}
*/
int main(){
int T;
SI(T);
while(T--){
SI(n);SI(m);
int a1,a2,a3,b1,b2,b3;
edgnum=;mem(head,-);
for(int i=;i<n;i++)add(i,i+),add(i+,i);
scanf("%d%d%d%d%d%d",&a1,&b1,&a2,&b2,&a3,&b3);
add(a1,b1);add(b1,a1);add(a2,b2);add(b2,a2);add(a3,b3);add(b3,a3);
__int64 ans=;
dijkscra(a1);
for(int i=;i<=n;i++)d1[i]=d[i];
dijkscra(a2);
for(int i=;i<=n;i++)d2[i]=d[i];
dijkscra(a3);
for(int i=;i<=n;i++)d3[i]=d[i]; for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
/*dijkscra(u);*/
int temp=min(min(abs(v-u),abs(u-a1)+d1[v]),min(abs(u-a2)+d2[v],abs(u-a3)+d3[v]));
//printf("%d\n",temp);
ans=(ans+temp*i)%MOD;
}
printf("%I64d\n",ans);
}
return ;
}
Shortest Path(思维,dfs)的更多相关文章
- zoj 2760 How Many Shortest Path 最大流
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...
- 【ZOJ2760】How Many Shortest Path
How Many Shortest Path 标签: 网络流 描述 Given a weighted directed graph, we define the shortest path as th ...
- ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]
人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了…… 题目链接:http://acm.zju.edu.cn/onli ...
- ZOJ 2760 How Many Shortest Path(最短路径+最大流)
Description Given a weighted directed graph, we define the shortest path as the path who has the sma ...
- hdu6446 Tree and Permutation 2018ccpc网络赛 思维+dfs
题目传送门 题目描述:给出一颗树,每条边都有权值,然后列出一个n的全排列,对于所有的全排列,比如1 2 3 4这样一个排列,要算出1到2的树上距离加2到3的树上距离加3到4的树上距离,这个和就是一个排 ...
- zoj How Many Shortest Path
How Many Shortest Path 题目: 给出一张图,求解最短路有几条.处理特别BT.还有就是要特别处理map[i][i] = 0,数据有不等于0的情况! 竟然脑残到了些错floyd! ! ...
- Codefroces Educational Round 27 845G Shortest Path Problem?
Shortest Path Problem? You are given an undirected graph with weighted edges. The length of some pat ...
- CF938G Shortest Path Queries 和 CF576E Painting Edges
这两道都用到了线段树分治和按秩合并可撤销并查集. Shortest Path Queries 给出一个连通带权无向图,边有边权,要求支持 q 个操作: x y d 在原图中加入一条 x 到 y 权值为 ...
- leetcode_1293. Shortest Path in a Grid with Obstacles Elimination_[dp动态规划]
题目链接 Given a m * n grid, where each cell is either 0 (empty) or 1 (obstacle). In one step, you can m ...
随机推荐
- ISSkin 使用技巧,WinXP 下的窗口阴影
原文 http://restools.hanzify.org/article.asp?id=109 是否觉得在使用 ISSkin 的时候感觉窗口太过平板,尤其对于那些窗口边缘和窗口内部颜色一致的皮肤尤 ...
- thinkphp中神奇的create()方法
正常的表单提交会把所有的表单数据提交上来 $data = $_POST; print_r($data);exit; 结果 Array ( [status] => 1 [comment] => ...
- poj 2704 Pascal's Travels_记忆化搜索
一道简单但是题意蛋疼的题目 题意:给你个n*n的图,开始在左上角,要求走到右下角有多种走法,图上的数表示走几步,只能向右或向下走. #include<iostream> #include& ...
- C app
1,C 输入输出字符串
- CvMat、Mat、IplImage之间的转换详解及实例
见原博客:http://blog.sina.com.cn/s/blog_74a459380101obhm.html OpenCV学习之CvMat的用法详解及实例 CvMat是OpenCV比较基础的函数 ...
- Oozie入门
作者 Boris Lublinsky, Michael Segel ,译者 侯伯薇 发布于 2011年8月18日 |注意:QCon全球软件开发大会(北京)2016年4月21-23日,了解更多详情! 分 ...
- 成本卷积报错:CSTPSCEX.explode_sc_cost_flags():40:ORA-01476: 除数为 0
成本卷积请求:供应链成本累计 - 打印报表 运行后报一下错误: MSG-00000: Rollup ID = 236403MSG-00000: Before CSTPSCEX.supply_chain ...
- c#中的数据类型简介
一.C#中的变量和常量 C#中用于定义常量的方式有两种一个使用const关键字,一个是用readonly关键字.使用const定义的常量叫静态常量(compile-time constant),用re ...
- ExecutorService 的理解与使用
ExecutorService 的理解与使用 http://my.oschina.net/bairrfhoinn/blog/177639 Java线程池ExecutorService http:// ...
- zoj 1149 Dividing
1到6的卡分别各有有限制的张数,问能不能恰好分,总张数不能超过20000. 很明显是多重背包问题,上去果写了个三重循环,然后就T了,重新打开背包九讲,找到了多重背包的二进制拆分优化,把其中一维n的复杂 ...