Shortest Path

 Accepts: 40
 Submissions: 610
 Time Limit: 4000/2000 MS (Java/Others)
 Memory Limit: 131072/131072 K (Java/Others)
Problem Description

There is a path graph G=(V,E)G=(V,E) with nn vertices. Vertices are numbered from 11 to nn and there is an edge with unit length between iiand i + 1i+1 (1 \le i < n)(1≤i<n). To make the graph more interesting, someone adds three more edges to the graph. The length of each new edge is 11.

You are given the graph and several queries about the shortest path between some pairs of vertices.

Input

There are multiple test cases. The first line of input contains an integer TT, indicating the number of test cases. For each test case:

The first line contains two integer nn and mm (1 \le n, m \le 10^5)(1≤n,m≤10​5​​) -- the number of vertices and the number of queries. The next line contains 6 integers a_1, b_1, a_2, b_2, a_3, b_3a​1​​,b​1​​,a​2​​,b​2​​,a​3​​,b​3​​ (1 \le a_1,a_2,a_3,b_1,b_2,b_3 \le n)(1≤a​1​​,a​2​​,a​3​​,b​1​​,b​2​​,b​3​​≤n), separated by a space, denoting the new added three edges are (a_1,b_1)(a​1​​,b​1​​), (a_2,b_2)(a​2​​,b​2​​), (a_3,b_3)(a​3​​,b​3​​).

In the next mm lines, each contains two integers s_is​i​​ and t_it​i​​ (1 \le s_i, t_i \le n)(1≤s​i​​,t​i​​≤n), denoting a query.

The sum of values of mm in all test cases doesn't exceed 10^610​6​​.

Output

For each test cases, output an integer S=(\displaystyle\sum_{i=1}^{m} i \cdot z_i) \text{ mod } (10^9 + 7)S=(​i=1​∑​m​​i⋅z​i​​) mod (10​9​​+7), where z_iz​i​​ is the answer for ii-th query.

Sample Input
1
10 2
2 4 5 7 8 10
1 5
3 1
Sample Output
7
题解:最短路,本来完全暴力的最短路,果断超时,最后听了大神的想法,是求加的那三条边的最短路;让每次给的u,v找u到那三个起点的距离与
d[v]的和与v-u找最小值;还是超时,先放着吧,明天再看;
今天看了下发现自己写的很有问题,哪有那么麻烦,直接dfs下就好了,其实就是个思维题,用图论肯定超了。。。
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<string>
using namespace std;
const int INF=0x3f3f3f3f;
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define P_ printf(" ")
#define mem(x,y) memset(x,y,sizeof(x))
const int MAXN=1e5+;
const int MOD=1e9+;
typedef long long LL;
struct Dot{
int x,y;
};
Dot dot[];
int u,v;
LL ans;
int vis[];
void dfs(int pos,int temp){
if(temp+abs(v-pos)<ans)ans=temp+abs(v-pos);
for(int i=;i<;i++){
if(vis[i])continue;
vis[i]=;
dfs(dot[i].y,temp+abs(pos-dot[i].x)+);
dfs(dot[i].x,temp+abs(pos-dot[i].y)+);
vis[i]=;
}
}
int main(){
int T;
SI(T);
int N,M;
while(T--){
SI(N);SI(M);
for(int i=;i<;i++)SI(dot[i].x),SI(dot[i].y);
LL temp=;
vis[]=vis[]=vis[]=;
for(int i=;i<=M;i++){
SI(u);SI(v);
ans=abs(v-u);
dfs(u,);
temp=(temp+ans*i)%MOD;
}
printf("%lld\n",temp);
}
return ;
}
我的超时代码:先不说超时了,这样情况都没考虑完全,都没考虑过好几条路的情况;再者这样肯定会超时了。。。
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<string>
using namespace std;
const int INF=0x3f3f3f3f;
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define P_ printf(" ")
#define mem(x,y) memset(x,y,sizeof(x))
const int MAXN=1e5+;
const int MOD=1e9+;
int head[MAXN<<];
int vis[MAXN];
int n,m;
int d1[MAXN],d2[MAXN],d3[MAXN];
int d[MAXN];
struct Node{
int from,to,next;
};
Node dt[MAXN<<];
int edgnum;
void add(int u,int v){
dt[edgnum].from=u;dt[edgnum].to=v;
dt[edgnum].next=head[u];
head[u]=edgnum++;
}
void dijkscra(int u){
mem(vis,);
mem(d,INF);
d[u]=;
while(true){
int k=-;
for(int i=;i<=n;i++){
if(!vis[i])if(k==-||d[i]<d[k])k=i;
}
if(k==-)break;
vis[k]=;
for(int i=head[k];i!=-;i=dt[i].next){
int u=dt[i].from,v=dt[i].to;
//printf("%d %d\n",u,v);
d[v]=min(d[v],d[u]+);
}
}
} /*
int temp;
void dfs(int u,int v,int t){
if(t>n)return;
if(u==v){
temp=min(temp,t);
return;
}
for(int i=head[u];i!=-1;i=dt[i].next){
dfs(dt[i].to,v,t+1);
}
}
*/
int main(){
int T;
SI(T);
while(T--){
SI(n);SI(m);
int a1,a2,a3,b1,b2,b3;
edgnum=;mem(head,-);
for(int i=;i<n;i++)add(i,i+),add(i+,i);
scanf("%d%d%d%d%d%d",&a1,&b1,&a2,&b2,&a3,&b3);
add(a1,b1);add(b1,a1);add(a2,b2);add(b2,a2);add(a3,b3);add(b3,a3);
__int64 ans=;
dijkscra(a1);
for(int i=;i<=n;i++)d1[i]=d[i];
dijkscra(a2);
for(int i=;i<=n;i++)d2[i]=d[i];
dijkscra(a3);
for(int i=;i<=n;i++)d3[i]=d[i]; for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
/*dijkscra(u);*/
int temp=min(min(abs(v-u),abs(u-a1)+d1[v]),min(abs(u-a2)+d2[v],abs(u-a3)+d3[v]));
//printf("%d\n",temp);
ans=(ans+temp*i)%MOD;
}
printf("%I64d\n",ans);
}
return ;
}

Shortest Path(思维,dfs)的更多相关文章

  1. zoj 2760 How Many Shortest Path 最大流

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...

  2. 【ZOJ2760】How Many Shortest Path

    How Many Shortest Path 标签: 网络流 描述 Given a weighted directed graph, we define the shortest path as th ...

  3. ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]

    人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了…… 题目链接:http://acm.zju.edu.cn/onli ...

  4. ZOJ 2760 How Many Shortest Path(最短路径+最大流)

    Description Given a weighted directed graph, we define the shortest path as the path who has the sma ...

  5. hdu6446 Tree and Permutation 2018ccpc网络赛 思维+dfs

    题目传送门 题目描述:给出一颗树,每条边都有权值,然后列出一个n的全排列,对于所有的全排列,比如1 2 3 4这样一个排列,要算出1到2的树上距离加2到3的树上距离加3到4的树上距离,这个和就是一个排 ...

  6. zoj How Many Shortest Path

    How Many Shortest Path 题目: 给出一张图,求解最短路有几条.处理特别BT.还有就是要特别处理map[i][i] = 0,数据有不等于0的情况! 竟然脑残到了些错floyd! ! ...

  7. Codefroces Educational Round 27 845G Shortest Path Problem?

    Shortest Path Problem? You are given an undirected graph with weighted edges. The length of some pat ...

  8. CF938G Shortest Path Queries 和 CF576E Painting Edges

    这两道都用到了线段树分治和按秩合并可撤销并查集. Shortest Path Queries 给出一个连通带权无向图,边有边权,要求支持 q 个操作: x y d 在原图中加入一条 x 到 y 权值为 ...

  9. leetcode_1293. Shortest Path in a Grid with Obstacles Elimination_[dp动态规划]

    题目链接 Given a m * n grid, where each cell is either 0 (empty) or 1 (obstacle). In one step, you can m ...

随机推荐

  1. U盘开发之SCSI命令

    借助硬件USB协议分析仪,可以清楚的看到U盘启动时和上位机之间交互的USB协议流程,从get desciptor get congfiguration set configuration到scsi命令 ...

  2. 知道版本对于出0day后批量攻击dedecms有非常大的帮助,先判断版本再选择相应exp,效率大增

    需要知道织梦网站版本URL路径后面添加/data/admin/ver.txt 例如:http://www.dedecms.com/data/admin/ver.txt 20100708是最新版本5.6 ...

  3. libevent evbuffer bug

    今天发现 libevent 2.0.22 一个坑爹的bug,导致消息混乱.查找问题浪费一天,复现代码如下 #include <event2/buffer.h> #include <s ...

  4. Opencv下图像对鼠标事件的响应

    直接上代码: //////////////////////////////////////////////////////////////////////// // // 该程序从文件中读入一幅图像, ...

  5. hdu 2157 How many ways_ 矩阵快速幂

    题意:略 直接矩阵乘法就行了 #include <iostream> #include<cstdio> #include<cstring> using namesp ...

  6. CentOS 6.8yum源的配置

    Centos配置163的yum源 1.首先备份当前系统的yum源 # mv /etc/yum.repo.d/Centos-Base.repo /etc/yum.repo.d/Centos-Base.r ...

  7. 依赖注入及AOP简述(十)——Web开发中常用Scope简介 .

    1.2.    Web开发中常用Scope简介 这里主要介绍基于Servlet的Web开发中常用的Scope. l        第一个比较常用的就是Application级Scope,通常我们会将一 ...

  8. Unity 利用NGUI2.6.3做技能冷却的CD效果

    NGUI非常强大我们今天来学习一下,如何利用NGUI做技能冷却的CD效果.先导入NGUI的插件.没有的话这里有啊NGUI2.6.3下载地址: http://vdisk.weibo.com/s/KLqn ...

  9. asp.net文件操作类

    /** 文件操作类 **/ #region 引用命名空间 using System; using System.Collections.Generic; using System.Text; usin ...

  10. hdu2222Keywords Search

    Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...