Shortest Path(思维,dfs)
Shortest Path
There is a path graph G=(V,E)G=(V,E) with nn vertices. Vertices are numbered from 11 to nn and there is an edge with unit length between iiand i + 1i+1 (1 \le i < n)(1≤i<n). To make the graph more interesting, someone adds three more edges to the graph. The length of each new edge is 11.
You are given the graph and several queries about the shortest path between some pairs of vertices.
There are multiple test cases. The first line of input contains an integer TT, indicating the number of test cases. For each test case:
The first line contains two integer nn and mm (1 \le n, m \le 10^5)(1≤n,m≤105) -- the number of vertices and the number of queries. The next line contains 6 integers a_1, b_1, a_2, b_2, a_3, b_3a1,b1,a2,b2,a3,b3 (1 \le a_1,a_2,a_3,b_1,b_2,b_3 \le n)(1≤a1,a2,a3,b1,b2,b3≤n), separated by a space, denoting the new added three edges are (a_1,b_1)(a1,b1), (a_2,b_2)(a2,b2), (a_3,b_3)(a3,b3).
In the next mm lines, each contains two integers s_isi and t_iti (1 \le s_i, t_i \le n)(1≤si,ti≤n), denoting a query.
The sum of values of mm in all test cases doesn't exceed 10^6106.
For each test cases, output an integer S=(\displaystyle\sum_{i=1}^{m} i \cdot z_i) \text{ mod } (10^9 + 7)S=(i=1∑mi⋅zi) mod (109+7), where z_izi is the answer for ii-th query.
1
10 2
2 4 5 7 8 10
1 5
3 1
7
题解:最短路,本来完全暴力的最短路,果断超时,最后听了大神的想法,是求加的那三条边的最短路;让每次给的u,v找u到那三个起点的距离与
d[v]的和与v-u找最小值;还是超时,先放着吧,明天再看;
今天看了下发现自己写的很有问题,哪有那么麻烦,直接dfs下就好了,其实就是个思维题,用图论肯定超了。。。
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<string>
using namespace std;
const int INF=0x3f3f3f3f;
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define P_ printf(" ")
#define mem(x,y) memset(x,y,sizeof(x))
const int MAXN=1e5+;
const int MOD=1e9+;
typedef long long LL;
struct Dot{
int x,y;
};
Dot dot[];
int u,v;
LL ans;
int vis[];
void dfs(int pos,int temp){
if(temp+abs(v-pos)<ans)ans=temp+abs(v-pos);
for(int i=;i<;i++){
if(vis[i])continue;
vis[i]=;
dfs(dot[i].y,temp+abs(pos-dot[i].x)+);
dfs(dot[i].x,temp+abs(pos-dot[i].y)+);
vis[i]=;
}
}
int main(){
int T;
SI(T);
int N,M;
while(T--){
SI(N);SI(M);
for(int i=;i<;i++)SI(dot[i].x),SI(dot[i].y);
LL temp=;
vis[]=vis[]=vis[]=;
for(int i=;i<=M;i++){
SI(u);SI(v);
ans=abs(v-u);
dfs(u,);
temp=(temp+ans*i)%MOD;
}
printf("%lld\n",temp);
}
return ;
}
我的超时代码:先不说超时了,这样情况都没考虑完全,都没考虑过好几条路的情况;再者这样肯定会超时了。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<string>
using namespace std;
const int INF=0x3f3f3f3f;
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define P_ printf(" ")
#define mem(x,y) memset(x,y,sizeof(x))
const int MAXN=1e5+;
const int MOD=1e9+;
int head[MAXN<<];
int vis[MAXN];
int n,m;
int d1[MAXN],d2[MAXN],d3[MAXN];
int d[MAXN];
struct Node{
int from,to,next;
};
Node dt[MAXN<<];
int edgnum;
void add(int u,int v){
dt[edgnum].from=u;dt[edgnum].to=v;
dt[edgnum].next=head[u];
head[u]=edgnum++;
}
void dijkscra(int u){
mem(vis,);
mem(d,INF);
d[u]=;
while(true){
int k=-;
for(int i=;i<=n;i++){
if(!vis[i])if(k==-||d[i]<d[k])k=i;
}
if(k==-)break;
vis[k]=;
for(int i=head[k];i!=-;i=dt[i].next){
int u=dt[i].from,v=dt[i].to;
//printf("%d %d\n",u,v);
d[v]=min(d[v],d[u]+);
}
}
} /*
int temp;
void dfs(int u,int v,int t){
if(t>n)return;
if(u==v){
temp=min(temp,t);
return;
}
for(int i=head[u];i!=-1;i=dt[i].next){
dfs(dt[i].to,v,t+1);
}
}
*/
int main(){
int T;
SI(T);
while(T--){
SI(n);SI(m);
int a1,a2,a3,b1,b2,b3;
edgnum=;mem(head,-);
for(int i=;i<n;i++)add(i,i+),add(i+,i);
scanf("%d%d%d%d%d%d",&a1,&b1,&a2,&b2,&a3,&b3);
add(a1,b1);add(b1,a1);add(a2,b2);add(b2,a2);add(a3,b3);add(b3,a3);
__int64 ans=;
dijkscra(a1);
for(int i=;i<=n;i++)d1[i]=d[i];
dijkscra(a2);
for(int i=;i<=n;i++)d2[i]=d[i];
dijkscra(a3);
for(int i=;i<=n;i++)d3[i]=d[i]; for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
/*dijkscra(u);*/
int temp=min(min(abs(v-u),abs(u-a1)+d1[v]),min(abs(u-a2)+d2[v],abs(u-a3)+d3[v]));
//printf("%d\n",temp);
ans=(ans+temp*i)%MOD;
}
printf("%I64d\n",ans);
}
return ;
}
Shortest Path(思维,dfs)的更多相关文章
- zoj 2760 How Many Shortest Path 最大流
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...
- 【ZOJ2760】How Many Shortest Path
How Many Shortest Path 标签: 网络流 描述 Given a weighted directed graph, we define the shortest path as th ...
- ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]
人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了…… 题目链接:http://acm.zju.edu.cn/onli ...
- ZOJ 2760 How Many Shortest Path(最短路径+最大流)
Description Given a weighted directed graph, we define the shortest path as the path who has the sma ...
- hdu6446 Tree and Permutation 2018ccpc网络赛 思维+dfs
题目传送门 题目描述:给出一颗树,每条边都有权值,然后列出一个n的全排列,对于所有的全排列,比如1 2 3 4这样一个排列,要算出1到2的树上距离加2到3的树上距离加3到4的树上距离,这个和就是一个排 ...
- zoj How Many Shortest Path
How Many Shortest Path 题目: 给出一张图,求解最短路有几条.处理特别BT.还有就是要特别处理map[i][i] = 0,数据有不等于0的情况! 竟然脑残到了些错floyd! ! ...
- Codefroces Educational Round 27 845G Shortest Path Problem?
Shortest Path Problem? You are given an undirected graph with weighted edges. The length of some pat ...
- CF938G Shortest Path Queries 和 CF576E Painting Edges
这两道都用到了线段树分治和按秩合并可撤销并查集. Shortest Path Queries 给出一个连通带权无向图,边有边权,要求支持 q 个操作: x y d 在原图中加入一条 x 到 y 权值为 ...
- leetcode_1293. Shortest Path in a Grid with Obstacles Elimination_[dp动态规划]
题目链接 Given a m * n grid, where each cell is either 0 (empty) or 1 (obstacle). In one step, you can m ...
随机推荐
- android事件详解
http://blog.csdn.net/asce1885/article/details/7596669 http://blog.csdn.net/liranke/article/details/6 ...
- USB device & USB controller & USB passthrough
目录 USB device USB controller Linux 相关命令 Python 相关库 Libvirt USB passthrough 参考资料 近期往 openstack 里倒腾 US ...
- 21副GIF动图让你了解各种数学概念(转。太强大了)
“让我们面对它:总的来说数学是不容易的,但当你征服了问题,并达到新的理解高度,这就是它给你的回报.” ——Danica McKellar 数学是很难的科学,但因为它是科学家用数学来解释宇宙的语言,我们 ...
- #include <hash_set>
哈希查找,不需要排序,适用于精确查找,比二分查找更快 #define _SILENCE_STDEXT_HASH_DEPRECATION_WARNINGS #include <iostream&g ...
- ListView嵌套ListView时发生:View too large to fit into drawing cache的问题
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcXkxMzg3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/d ...
- 获取oracle sql语句中绑定变量值的方法
在诊断 sql的性能问题时,我们有时候须要获取其绑定变量的实际值,然后将此实际值带入到sql语句其中,用原来的sql构成select语句(带where条件),实际的运行一下,看一下选择性怎样. 本文就 ...
- mac 桌面美化
官网:Übersicht 先来大图: 当然,,,我自己的这个还不成型,去官网看看吧,有大神们做好的各种主题可选哦~ 像这样1: 这样2: 甚至这样3:(酷毙了有木有..) Downlo ...
- yum php56
美国时间2014年11月13日,PHP开发团队,在「PHP 5.6.3 is available|PHP: Hypertext Preprocessor」上公布了PHP5.6系的最新版本「PHP 5. ...
- (转)解决JSP路径问题的方法(jsp文件开头path, basePath作用)
在JSP中的如果使用 "相对路径" 则有可能会出现问题. 因为 网页中的 "相对路径" , 他是相对于 "URL请求的地址" 去寻找资源. ...
- DOM的认识以及一些节点的应用
HTML DOM (文档对象模型) 当网页被加载时,浏览器会创建页面的文档对象模型(Document Object Model). HTML DOM 模型被构造为对象的树. HTML DOM 树 通过 ...