线段树:Segment Tree(单点修改/区间修改模板) C++
线段树是非常有效的数据结构,可以快速的维护单点修改,区域修改,查询最大值,最小值等功能。
同时,它也很重要。如果有一天比赛,你卡在了一道线段树模板题目上,这就真的尴尬了。不过,随着时代的进步,题目也越来越变态,线段树更多时候则是你算法时间复杂度的优化。
这是单点查询的代码。
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std; int n;
int a[]; struct node
{
int l;
int r;
int sum;
} t[]; void build (int i,int l,int r)
{
t[i].l=l;
t[i].r=r;
int mid=l+r>>;
if (l==r)
{
t[i].sum=a[l];return ;
} build(i<<,l,mid);
build((i<<)+,mid+,r); t[i].sum=t[i<<].sum+t[(i<<)+].sum; return ;
} void update(int i,int p,int k)
{
if (t[i].l==t[i].r)
{
t[i].sum=k;
return;
} int mid=t[i].l+t[i].r>>;
if (p<=mid) update(i<<,p,k);
if (p>mid) update((i<<)+,p,k);
t[i].sum=t[i<<].sum+t[(i<<)+].sum; return ;
} int getsum(int i,int l,int r)
{
int mid=(t[i].l+t[i].r)>>;
if (l<=t[i].l&&t[i].r<=r) return t[i].sum;
if (r<=mid) return getsum(i<<,l,r);
if (l>mid) return getsum((i<<)+,l,r); return getsum(i<<,l,r)+getsum((i<<)+,l,r);
} int main()
{
int m;
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
scanf("%d",&a[i]);
}
build(,,n);
while (m--)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if (x==)
{
update(,y,z);
}
else printf("%d\n",getsum(,y,z));
} return ;
}
下面是区间修改的代码。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cmath>
#include <set>
using namespace std; struct node
{
int l,r,s,d;
} t[];
int n,m;
int a[]; void pushup(int x)
{
t[x].s=t[x<<].s+t[(x<<)+].s;
return;
} void pushdown(int x)
{
int mid=(t[x].l+t[x].r)>>;
int d=t[x].d;
t[x<<].d+=d;t[(x<<)+].d+=d;
t[x<<].s+=(mid-t[x].l+)*d;
t[(x<<)+].s+=(t[x].r-mid)*d;
return;
} void build(int i,int l,int r)
{
t[i].l=l;
t[i].r=r;
t[i].d=;
if (l==r)
{
t[i].s=a[l];
return ;
} int mid=l+r>>; build(i<<,l,mid);
build((i<<)+,mid+,r); pushup(i);
return;
} int getsum(int i,int l,int r)
{
int mid=t[i].l+t[i].r>>;
if (l<=t[i].l&&t[i].r<=r)
{
return t[i].s;
}
int d=t[i].d;
if (!d) pushdown(i);
int ret=;
if (mid>=l) ret+=getsum(i<<,l,r);
if (mid<r) ret+=getsum((i<<)+,l,r); return ret;
} void update(int i,int l,int r,int del)
{
if (t[i].l==t[i].r)
{
t[i].d+=del;
t[i].s+=(t[i].l-t[i].r+)*del;
return ;
} int mid=t[i].l+t[i].r>>;
if (!t[i].d) pushdown(i);
if (mid>=l) update(i<<,l,r,del);
if (mid<r) update((i<<)+,l,r,del);
pushup(i);
} int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
build (,,n); for (int i=;i<=m;i++)
{
int x,y,z,d;
scanf("%d",&x);
if (x==)
{
scanf("%d%d%d",&y,&z,&d);
update(,y,z,d);
}
if (x==)
{
scanf("%d%d",&y,&z);
printf("%d\n",getsum(,y,z));
}
} return ;
}
线段树:Segment Tree(单点修改/区间修改模板) C++的更多相关文章
- 『线段树 Segment Tree』
更新了基础部分 更新了\(lazytag\)标记的讲解 线段树 Segment Tree 今天来讲一下经典的线段树. 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间 ...
- 线段树(Segment Tree)(转)
原文链接:线段树(Segment Tree) 1.概述 线段树,也叫区间树,是一个完全二叉树,它在各个节点保存一条线段(即“子数组”),因而常用于解决数列维护问题,基本能保证每个操作的复杂度为O(lg ...
- BZOJ4999:This Problem Is Too Simple!(DFS序&树上差分&线段树动态开点:区间修改单点查询)
Description 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将i节点的值改为x. 2. Q i j x(0<=x&l ...
- BZOJ.4695.最假女选手(线段树 Segment tree Beats!)
题目链接 区间取\(\max,\ \min\)并维护区间和是普通线段树无法处理的. 对于操作二,维护区间最小值\(mn\).最小值个数\(t\).严格次小值\(se\). 当\(mn\geq x\)时 ...
- 【数据结构系列】线段树(Segment Tree)
一.线段树的定义 线段树,又名区间树,是一种二叉搜索树. 那么问题来了,啥是二叉搜索树呢? 对于一棵二叉树,若满足: ①它的左子树不空,则左子树上所有结点的值均小于它的根结点的值 ②若它的右子树不空, ...
- 浅谈线段树 Segment Tree
众所周知,线段树是algo中很重要的一项! 一.简介 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 使用线段树可以快速的查找某一个节点在 ...
- 线段树(segment tree)
线段树在一些acm题目中经常见到,这种数据结构主要应用在计算几何和地理信息系统中.下图就为一个线段树: (PS:可能你见过线段树的不同表示方式,但是都大同小异,根据自己的需要来建就行.) 1.线段树基 ...
- poj 2763 Housewife Wind(树链剖分+单点查询+区间修改)
题目链接:http://poj.org/problem?id=2763 题意:给一个数,边之间有权值,然后两种操作,第一种:求任意两点的权值和,第二,修改树上两点的权值. 题解:简单的树链剖分. #i ...
- 线段树 Interval Tree
一.线段树 线段树既是线段也是树,并且是一棵二叉树,每个结点是一条线段,每条线段的左右儿子线段分别是该线段的左半和右半区间,递归定义之后就是一棵线段树. 例题:给定N条线段,{[2, 5], [4, ...
- Libre OJ 130、131、132 (树状数组 单点修改、区间查询 -> 区间修改,单点查询 -> 区间修改,区间查询)
这三题均可以用树状数组.分块或线段树来做 #130. 树状数组 1 :单点修改,区间查询 题目链接:https://loj.ac/problem/130 题目描述 这是一道模板题. 给定数列 a[1] ...
随机推荐
- discuz 和 wordpress 整合注意问题
要先在应用列表里添加自己本身的应用即要保证同步操作,本身也是一个应用,并保证通信成功: 应用和ucenter不在一个机器上,IP都要设定: discuz/uc_client/ 下要有一个接收数据的da ...
- C#数字图像处理的3种方法
本文主要通过彩色图象灰度化来介绍C#处理数字图像的3种方法,Bitmap类.BitmapData类和Graphics类是C#处理图像的的3个重要的类. Bitmap只要用于处理由像素数据定义的图像的对 ...
- Python学习笔记整理(十)Python的if测试
if语句是选取要执行的操作. 一.if语句 1.通用格式 形式是if测试,后面跟着一个或多个可选的elif(else if)测试,以及一个最终选用的else块.测试和else部分可以结合嵌套语句块,缩 ...
- ES6-2
向ES6看齐,用更好的JavaScript(二) 上一篇 中介绍了关于变量部分的新特性,本篇将从现有对象的拓展来展开介绍 1 增加了模板字符串 先看一下,ES6之前我们是如何实现输出模板的: do ...
- UIImagePickerController 操作图库
UIImagePickerController详解 转载自:http://blog.csdn.net/kingsley_cxz/article/details/9157093 1.UIImage ...
- Web.Config 对静态文件 js css img 的客户端缓存策略
<?xml version="1.0" encoding="utf-8"?> <configuration> <system.we ...
- 如何通过ftell和fseek来获取文件大小
#include <stdio.h> int main () { FILE * pFile=NULL; long size; pFile = fopen ("myfile.txt ...
- java--字节数组输入、输出流
在java网络编程中,字节数组很重要,它可以传输任何资料(文本,音频,视频,图片等),因此掌握字节数组和其它数据类型的相互转化尤为重要. 示例代码: package com.lky.util; imp ...
- linux部署mongodb及基本操作
原文:http://blog.csdn.net/jinzhencs/article/details/50930877 一.安装部署mongo 1.创建文件夹 /opt/mongodb/single / ...
- HTML的表格玩法
HTML的表格玩法 HTML也是可已展示表格的,大体结构如下 <!DOCTYPE html> <html lang="en"> <head> & ...