论文笔记-Mining latent relations in peer-production environments
背景
- 用户合作产生内容的网站越来越多,有许多隐藏的信息可以去挖掘
- wiki上保存了贡献者的编辑记录,提供了非常多的有用的信息
- 研究发现,大部分的贡献者仅仅会参与编辑很小数量的文章,修改的版本也有限制,通常也只在某几个特定的领域/话题中
- 含有某个主题的文章通常指吸引特定一部分的读者和编辑者
论文关注点
- 提出一个新的相似度计算方法 expert-based similarity 应用于维基上有争论性的文章集,从而达到更好的聚类效果
- 维基上争论性的文章的缘由是和自身的特定主题相关的,而不是相关编辑参与者
论文实验方法
- 比较已有的三种相似度方法:cosine similarity;SimRank;P-Rank
- expert-based similarity的理论假设:如果两篇文章被同一个人编辑过,我们则认为该两篇文章是相似的
- 使用了下面三种方法来检测维基上文章的相关性
Relevance aspect Similarity Relation type Content Cosine similarity Explicit Hyperlink P-Rank and SimRank similarities Implicit Co-editorship Expert-based similarity Implicit
- 文章一共进行了三次实验来评价以上相似度方法,并验证了方法在大量数据上的一般性
- 第一次实验使用了compactness指标来评价聚类效果,聚类算法使用了K-Medoids,相似度算法使用了SimRank和P-Rank,同时为了避免选择K时带来的干扰,使用了DBScan方法避免预先指定聚类的个数K
expert-based方法结果最稳定,有较高的性能和鲁棒性
SimRank方法的结果最坏
通过人工方法的评测发现,expert-based方法对于发现维基中语义相关的文章非常有用 - 第二次实验利用了分类标签,用purity和entropy来评价聚类效果,聚类使用了K-Medoids和AHC,相似度使用了上述4种方法
总的来说,expert-based方法在量化wiki文章的相关性上是一种有效的措施
- 第三次实验是在大规模的文档集上评价了expert-based similarity
- 第一次实验使用了compactness指标来评价聚类效果,聚类算法使用了K-Medoids,相似度算法使用了SimRank和P-Rank,同时为了避免选择K时带来的干扰,使用了DBScan方法避免预先指定聚类的个数K
- 数据的准备:选用了宗教主题相关的文章,考虑到里面争论性的比例比较大;选取的文章保证有5个以上的编辑者;对于基于内容的相似度方法,通常选取最近的5个版本;对于基于超链接的选择最近的3到5个含有链接的版本
- expert-based方法的优势在于对于破坏性的大量的编辑有较好的防范性,原因在于它采用了类似IDF的计算方法
- 第五章验证了导致争论的主要原因
- 如果两个用户之间有互相删除内容的行为,我们认为这两个用户是在争论
- 通过对贡献者、concept等方面入手,比较争论性形成的原因,得到结论:特定的争论性的主题是维基争论性文章的主要缘由
文章结论
- expert-based similarity方法是一种高效有用的度量文章相关度的方法
如若感兴趣,可自行google下载,提供参考链接
论文笔记-Mining latent relations in peer-production environments的更多相关文章
- 论文笔记:Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments 2017-10-25 16:38:23 [Proj ...
- Face Aging with Conditional Generative Adversarial Network 论文笔记
Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28 Motivation: 本文是要根据最新的条件产 ...
- 【论文笔记】Learning Fashion Compatibility with Bidirectional LSTMs
论文:<Learning Fashion Compatibility with Bidirectional LSTMs> 论文地址:https://arxiv.org/abs/1707.0 ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
- Twitter 新一代流处理利器——Heron 论文笔记之Heron架构
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...
- Deep Learning论文笔记之(六)Multi-Stage多级架构分析
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些 ...
- Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型
看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...
随机推荐
- qt无法使用终端启动的解决方法
在Terminal中直接输入命令就能打开QtCreator, i.e. ~$ qtcreator 就可以打开Qt Creator了. 想完成这个功能的原因是,一般在Linux下打命令比较方便,而师兄给 ...
- Docker安装ActiveMQ
⒈下载 docker pull webcenter/activemq ⒉运行 docker run -d --name myactivemq -p 8161:8161 -p 61613:61613 - ...
- 详解.NET IL代码(一)
本文主要介绍IL代码,内容大部分来自网上,进行整理合并的. 一.IL简介 为什么要了解IL代码? 如果想学好.NET,IL是必须的基础,IL代码是.NET运行的基础,当我们对运行结果有异议的时候,可以 ...
- mybatis框架之foreach标签
foreach一共有三种类型,分别为List,[](array),Map三种,下面表格是我总结的各个属性的用途和注意点. foreach属性 属性 描述 item 循环体中的具体对象.支持属性的点路径 ...
- sqlserver2008 链接服务器 2000
背景 这个项目就有意思了,我用的是sqlserver2008,对方用的是sqlserver2000,还装在windows2000上,是个很老的系统了.两方要对接,对方技术太菜,自己竟然不会转2000. ...
- C# Excel使用NPOI
程序处理excel使用using Microsoft.Office.Interop.Excel方式,运行程序需要电脑安装excel,而且excel版本还需要一样,使用起来不方便.使用NPOI不用电脑安 ...
- zabbix系列(三)zabbix3.0.4微信告警配置详解
一.准备工作 申请微信公众号,并且是可以有发送消息的接口.添加有个脚本去调用微信的api. 之后可以参考下zabbix 的搭建,然后了解下脚本报警,之后再考虑报警方式的多样化. 个人微信一个 个人邮箱 ...
- TCP端口转发(centos7)
=============================================== 2019/2/14_第1次修改 ccb_warlock == ...
- Pandas详解一
pandas简介 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.pandas提 ...
- 红包外挂史及AccessibilityService分析与防御
最近在做一个有趣的外挂的小玩意,前提我们要了解一个重要的类AccessibilityService 转载请注明出处:https://lizhaoxuan.github.io 前言 提起Accessib ...