bzoj 1076 状态压缩最优期望
题意:
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随 机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常 小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉 这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?
dp[i][s] 还剩i次掉落机会,前k-i次已经选择了s的物品,那么接下来最优期望得多少分.
有种倒推的感觉,状态中保存了已经做的决策对该后续决策有影响的信息,相当与提前假设,然后根据未来的不同情况选择当前的最有决策.
/**************************************************************
Problem: 1076
User: idy002
Language: C++
Result: Accepted
Time:1144 ms
Memory:26660 kb
****************************************************************/ #include <cstdio>
#define max(a,b) ((a)>(b)?(a):(b))
#define K 101
#define N 15 int n, k;
int a[N], r[N], bound;
double dp[K][<<N]; int main() {
scanf( "%d%d", &k, &n );
for( int i=,p; i<n; i++ ) {
scanf( "%d", a+i );
while() {
scanf( "%d", &p );
if( p== ) break;
r[i] |= <<(p-);
}
}
bound = (<<n)-;
for( int i=; i<=k; i++ ) {
for( int s=; s<=bound; s++ ) {
dp[i][s] = 0.0;
for( int j=; j<n; j++ ) {
if( (s & r[j]) == r[j] ) {
double v1 = a[j]+dp[i-][s|(<<j)];
double v2 = dp[i-][s];
dp[i][s] += max( v1, v2 );
} else {
dp[i][s] += dp[i-][s];
}
}
dp[i][s] /= n;
}
}
printf( "%.6lf\n", dp[k][] );
}
bzoj 1076 状态压缩最优期望的更多相关文章
- BZOJ 1087状态压缩DP
状态压缩DP真心不会写,参考了别人的写法. 先预处理出合理状态, 我们用二进制表示可以放棋子的状态,DP[I][J][K]:表示现在处理到第I行,J:表示第I行的状态,K表示现在为止一共放的棋子数量. ...
- BZOJ 1076 奖励关(状压期望DP)
当前得分期望=(上一轮得分期望+这一轮得分)/m dp[i,j]:第i轮拿的物品方案为j的最优得分期望 如果我们正着去做,会出现从不合法状态(比如前i个根本无法达到j这种方案),所以从后向前推 如果当 ...
- BZOJ 1076: [SCOI2008]奖励关 [DP 期望 状压]
传送门 题意:$n$种宝物,出现$k$次每次一种,每种宝物有价值和吃掉它之前必须要吃掉的宝物的集合,求采取最优策略的期望最大价值 1<=k<=100,1<=n<=15,分值为[ ...
- bzoj 1076 奖励关 状压+期望dp
因为每次选择都是有后效性的,直接dp肯定不行,所以需要逆推. f[i][j]表示从第i次开始,初始状态为j的期望收益 #include<cstdio> #include<cstrin ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- hdu 4336 Card Collector(期望 dp 状态压缩)
Problem Description In your childhood, people in the famous novel Water Margin, you will win an amaz ...
- 【bzoj1076】[SCOI2008]奖励关 期望dp+状态压缩dp
题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
- BZOJ 1087 互不侵犯King 状态压缩DP
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1087 题目大意; 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国 ...
随机推荐
- Python3学习笔记14-迭代与列表生成式
迭代 如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration) 在Python中,迭代是通过for...in来完成的. d = ...
- 高级 Java 面试通关知识点整理!
1.常用设计模式 单例模式:懒汉式.饿汉式.双重校验锁.静态加载,内部类加载.枚举类加载.保证一个类仅有一个实例,并提供一个访问它的全局访问点. 代理模式:动态代理和静态代理,什么时候使用动态代理. ...
- Java基础96 ajax技术的使用
本文知识点(目录): 1.ajax的概念 2.使用ajax技术获取服务端的数据_实例 3.使用ajax技术检查用户名是否已存在_实例 4.使用ajax技术验证登录页面的用户名和密码_实例 ...
- 【splunk】仪表盘导入导出
仪表盘导出: splunk目录/etc/users/admin/search/local/data/ui/views 目录下,拷贝所有的xml文件 导入: 创建仪表盘->编辑来源 将上面导 ...
- jquery中对父节点和子节点的利用
<tr id='new_tr'> <td id="td_1">td1</td> <td id="td_2">td ...
- cf343c 二分答案+模拟
/* 怎么判断能否在时间k内完成扫描 贪心:每次取出最靠左边的磁头去扫描最左边的,然后再往右扫描即可 如果当前点无法扫到最左侧点,那么后继点一样无法扫到 */ #include<bits/std ...
- zoj3195 联通树上三个点的路径长
输出有个坑,两个月之前就没对,,今天又被坑了一次 求联通树上三个点的路径长度,只要求两两点对的最短路径,加起来除以二即可 #include<iostream> #include<cs ...
- 性能测试二十五:redis-cli 命令总结
常用命令dbsize:查看redis中的kv数量 keys *:查看redis中所有的keyset key_1 v_1:新增一个key_1,包含v_1get key_1:查看key_1中的内容del ...
- pytest九:使用自定义标记 mark
pytest 可以支持自定义标记,自定义标记可以把一个 web 项目划分多个模块,然后指定模块名称执行.app 自动化的时候,如果想android 和 ios 公用一套代码时,也可以使用标记功能,标明 ...
- 记录片宇宙之the secret of the sun