点击打开链接

最大权匹配

KM算法

算法步骤:

设顶点Xi的顶标为a[i],顶点Yi的顶标为b[i]

ⅰ.初始时。a[i]为与Xi相关联的边的最大权值。b[j]=0。保证a[i]+b[j]>=w(i,j)成立

ⅱ.当相等子图中不包括完备匹配时,就适当改动顶标以扩大相等子图,直到找到完备匹配为止

ⅲ.改动顶标的方法

当从Xi寻找交错路失败后,得到一棵交错树,它的全部叶子节点都是X节点。对交错树中X顶点的顶标降低d值,Y顶点的顶标添加d值,对于图中全部的边(i,j),

能够看到:

i和j都不在交错树中,边(i,j)仍然不属于相等子图

i和j都在交错树中,边(i,j)仍然属于相等子图

i不在交错树中。j在交错树中,a[i]+b[j]扩大。边(i,j)不属于相等子图

i在交错树,j不在交错树中,边(i,j)有可能增加到相等子图中

为了使a[i]+b[j]>=w(i,j)始终成立,且至少有一条边增加到相等子图中,d=min{a[i]+b[j]-w(i,j)},i在交错树中,j不在交错树中

时间复杂度:须要找O(n)次增广路。每次增广最多须要改动O(n)次顶标。每次改动顶标时枚举边来求d值,复杂度为O(n2),总的复杂度为O(n4).简单优化能够减少到O(n3),每一个Y顶点一个“松弛量”函数slack,每次開始找增广路时初始化为无穷大。

在寻找增广路的过程中,检查边(i,j)时。假设不在相等子图中,则让slack[j]变成原值与A[i]+B[j]-w[i,j]的较小值。这样。在改动顶标时,取全部不在交错树中的Y顶点的slack值中的最小值作为d值就可以。但还要注意一点:改动顶标后,要把全部的slack值都减去d。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#define for0(a,b) for(a=0;a<b;++a)
#define for1(a,b) for(a=1;a<=b;++a)
#define foru(i,a,b) for(i=a;i<=b;++i)
#define ford(i,a,b) for(i=a;i>=b;--i)
using namespace std;
typedef long long ll;
const int maxn = 310;
const int INF = 1e9;
/*KM算法
*O(nx*nx*ny)
*求最大权匹配
*若求最小权匹配,可将权值取相反数,结果再取相反数。
*/
int nx, ny;
int g[maxn][maxn];
int linker[maxn], lx[maxn], ly[maxn];//y中各点匹配状态,x,y中的顶标
int slack[maxn];
bool visx[maxn], visy[maxn]; bool DFS(int x)
{
visx[x] = true;
for(int y=0; y<ny; ++y){
if(visy[y]) continue;
int tmp = lx[x] + ly[y] - g[x][y];
if(tmp == 0){
visy[y] = true;
if(linker[y] == -1 || DFS(linker[y])){
linker[y] = x;
return true;
}
}
else if(slack[y]> tmp)
slack[y] = tmp;
}
return false;
} int KM()
{
memset(linker, -1, sizeof linker );
memset(ly, 0, sizeof ly );
for(int i=0; i<nx; ++i){
lx[i] = - INF;
for(int j=0; j<ny; ++j)
if(g[i][j]> lx[i])
lx[i] = g[i][j];
}
for(int x=0; x<nx; ++x)
{
for(int i=0; i<ny; ++i)
slack[i] = INF;
while(true)
{
memset(visx, false, sizeof visx );
memset(visy, false, sizeof visy );
if(DFS(x)) break;
int d = INF;
for(int i=0; i<ny; ++i)
if(!visy[i] && d>slack[i])
d = slack[i];
for(int i=0; i<nx; ++i)
if(visx[i])
lx[i] -= d;
for(int i=0; i<ny; ++i)
{
if(visy[i]) ly[i] += d;
else slack[i] -= d;
}
}
}
int res = 0;
for(int i=0; i<ny; ++i)
if(linker[i] != -1)
res += g[linker[i]][i];
return res;
} //HDU 2255
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.cpp","r",stdin);
freopen("out.cpp", "w", stdout);
#endif // ONLINE_JUDGE
int n;
while(~scanf("%d", &n))
{
for(int i=0; i<n; ++i)
for(int j=0; j<n; ++j)
scanf("%d", &g[i][j]);
nx = ny = n;
printf("%d\n" ,KM());
}
return 0;
}

hdu2255 奔小康赚大钱,最大权匹配,KM算法的更多相关文章

  1. hdu2255 奔小康赚大钱 二分图最佳匹配--KM算法

    传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子.这可是一件大事,关系到人民的住房问题啊.村里共有n间房间,刚好有n家老百姓,考虑到每家都要有房住(如果有老百姓没房子住 ...

  2. 【HDU 2255】奔小康赚大钱 (最佳二分匹配KM算法)

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  3. hdu 2255 奔小康赚大钱 最大权匹配KM

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子.这可是一件大事 ...

  4. hdu-2255.奔小康赚大钱(最大权二分匹配)

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  5. HDU2255 奔小康赚大钱 (最大权完美匹配) 模板题【KM算法】

    <题目链接> 奔小康赚大钱 Problem Description 传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子.这可是一件大事,关系到人民的住房问题啊 ...

  6. HDU 2255.奔小康赚大钱 最大权匹配

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  7. hdu2255 奔小康赚大钱 km算法解决最优匹配(最大权完美匹配)

    /** 题目:hdu2255 奔小康赚大钱 km算法 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 题意:lv 思路:最优匹配(最大权完美匹配) ...

  8. Hdu2255 奔小康赚大钱(二分图最大权匹配KM算法)

    奔小康赚大钱 Problem Description 传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子. 这可是一件大事,关系到人民的住房问题啊.村里共有n间房间,刚好 ...

  9. HDU2255 奔小康赚大钱 —— 二分图最大权匹配 KM算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    ...

随机推荐

  1. JavaScript脚本的两种放置方式

    JavaScript脚本的两种放置方式 1在body里用 script标签引用 2 直接写在<script></script>标签之中

  2. DDD领域模型之分配权限(十三)

    权限分配和权限查找. 在DDD.Domain工程中新建:BAS_PermissionAssign类 public partial class BAS_PermissionAssgin:Aggreate ...

  3. PAT 之 A+B和C

    时间限制 1000 ms 内存限制 32768 KB 代码长度限制 100 KB 判断程序 Standard 题目描述 给定区间 [-2的31次方, 2的31次方] 内的3个整数 A.B 和 C,请判 ...

  4. 【BZOJ4919】[Lydsy六月月赛]大根堆

    题解: 我觉得数据结构写成结构体还是有必要的 因为不然一道题里出现了两个相同的数据结构由于名字很像很容易出错 另外初始化用segmenttree(){ } 首先裸的dp很好想 f[i][j]表示在i点 ...

  5. 【AtCoder】AGC018

    A - Getting Difference 我们肯定可以得到这些数的gcd,然后判断每个数减整数倍的gcd能否得到K #include <bits/stdc++.h> #define f ...

  6. 006 Spark中的wordcount以及TopK的程序编写

    1.启动 启动HDFS 启动spark的local模式./spark-shell 2.知识点 textFile: def textFile( path: String, minPartitions: ...

  7. pygame游戏开发入门例子

    # *_* coding:utf-8 *_* # 开发团队:中国软件开发团队# 开发人员:Administrator# 开发时间:2019/3/23 11:16# 文件名称:pygame_demo# ...

  8. go语言学习-安装和配置

    go的安装方式主要有两种,一种直接使用系统自带的软件源来安装,比如 ubuntu 可以直接使用 apt 安装,但通常这种方式安装的都不会是最新的.所以通常直接下载最新的安装包,可以到GoCN下载.下面 ...

  9. 说出ArrayList,Vector, LinkedList的存储性能和特性

     ArrayList和Vector都是使用数组方式存储数据,此数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插 ...

  10. 运行程序,解读this指向---case3

    片段1 var myObj = { fullname: "Hou Yi", getFullName: function(){ var self = this; console.lo ...