Master of GCD 【线段树区间更新 || 差分】
Master of GCD
时间限制: 1 Sec 内存限制: 128 MB
提交: 670 解决: 112
[提交] [状态] [命题人:admin]
题目描述
Hakase has n numbers in a line. At fi rst, they are all equal to 1. Besides, Hakase is interested in primes. She will choose a continuous subsequence [l, r] and a prime parameter x each time and for every l≤i≤r, she will change ai into ai*x. To simplify the problem, x will be 2 or 3. After m operations, Hakase wants to know what is the greatest common divisor of all the numbers.
输入
The first line contains an integer T (1≤T≤10) representing the number of test cases.
For each test case, the fi rst line contains two integers n (1≤n≤100000) and m (1≤m≤100000),where n refers to the length of the whole sequence and m means there are m operations.
The following m lines, each line contains three integers li (1≤li≤n), ri (1≤ri≤n), xi (xi∈{2,3} ),which are referred above.
输出
For each test case, print an integer in one line, representing the greatest common divisor of the sequence. Due to the answer might be very large, print the answer modulo 998244353.
样例输入
复制样例数据
2
5 3
1 3 2
3 5 2
1 5 3
6 3
1 2 2
5 6 2
1 6 2
样例输出
6
2
提示
For the first test case, after all operations, the numbers will be [6,6,12,6,6]. So the greatest common divisor is 6.
只需要求出【1,n】中乘2 和 乘3的最少次数
比赛的时候写的线段树 结束了学弟说用差分可以很快解决,给跪了orz
线段树代码:
#include<iostream>
#include<cstdio> //EOF,NULL
#include<cstring> //memset
#include<cstdlib> //rand,srand,system,itoa(int),atoi(char[]),atof(),malloc
#include<cmath> //ceil,floor,exp,log(e),log10(10),hypot(sqrt(x^2+y^2)),cbrt(sqrt(x^2+y^2+z^2))
#include<algorithm> //fill,reverse,next_permutation,__gcd,
#include<string>
#include<vector>
#include<queue>
#include<stack>
#include<utility>
#include<iterator>
#include<iomanip> //setw(set_min_width),setfill(char),setprecision(n),fixed,
#include<functional>
#include<map>
#include<set>
#include<limits.h> //INT_MAX
#include<bitset> // bitset<?> n
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;i++)
#define per(i,a,n) for(int i=n-1;i>=a;i--)
#define fori(x) for(int i=0;i<x;i++)
#define forj(x) for(int j=0;j<x;j++)
#define memset(x,y) memset(x,y,sizeof(x))
#define memcpy(x,y) memcpy(x,y,sizeof(y))
#define all(x) x.begin(),x.end()
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef pair<int,int> P;
typedef long long LL;
typedef long long ll;
const double eps=1e-8;
const double PI = acos(1.0);
const int INF = 0x3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int MOD = 1e9+7;
const ll mod = 998244353;
const int MAXN = 1e6+7;
const int maxm = 1;
const int maxn = 100000+10;
int T;
int n,m;
struct node {
ll l, r;
int lazy2,lazy3;
ll t;
ll cnt2,cnt3;
}tree[maxn << 2];
int a,b,x;
void pushup(int k){
tree[k].cnt2 = min(tree[k<<1].cnt2,tree[k<<1|1].cnt2);
tree[k].cnt3 = min(tree[k<<1].cnt3,tree[k<<1|1].cnt3);
}
void pushdown(int k)
{
if(tree[k].lazy2)
{
tree[k<<1].cnt2 += tree[k].lazy2;
tree[k<<1|1].cnt2 += tree[k].lazy2;
tree[k<<1].lazy2 += tree[k].lazy2;
tree[k<<1|1].lazy2 += tree[k].lazy2;
tree[k].lazy2 = 0;
}
if(tree[k].lazy3)
{
tree[k<<1].cnt3 += tree[k].lazy3;
tree[k<<1|1].cnt3 += tree[k].lazy3;;
tree[k<<1].lazy3 += tree[k].lazy3;
tree[k<<1|1].lazy3 += tree[k].lazy3;
tree[k].lazy3 = 0;
}
}
void build(int l,int r,int k){
tree[k].l = l;
tree[k].r = r;
tree[k].lazy2 = 0;
tree[k].lazy3 = 0;
tree[k].cnt2 = 0;
tree[k].cnt3 = 0;
if(l == r){
// tree[k].t = 1 ;
return ;
}
int mid = (r + l) >> 1 ;
build(l, mid, k << 1);
build(mid + 1,r , k << 1|1);
pushup(k);
}
void updata(int a,int b,int k,int x){
if(tree[k].l == tree[k].r)
{
if(x == 2)
tree[k].cnt2 ++;
if(x == 3)
tree[k].cnt3 ++;
return ;
}
if(a <= tree[k].l && b >= tree[k].r )
{
if(x == 2){
tree[k].cnt2 ++;
tree[k].lazy2 ++;
}
if(x == 3){
tree[k].cnt3 ++;
tree[k].lazy3 ++;
}
return ;
}
pushdown(k);
int mid = (tree[k].l + tree[k].r) >> 1;
if(a <= mid){
updata(a,b,k<<1,x);
}
if(b > mid){
updata(a,b,k<<1|1,x);
}
pushup(k);
}
int main(){
read(T);
while(T--){
read2(n,m);
build(1,n,1);
while(m--){
read3(a,b,x);
updata(a,b,1,x);
}
ll ans = 1;
for(int i = 0 ; i < tree[1].cnt2 ;i ++){
ans = ans * 2 % mod;
}
for(int i = 0 ; i < tree[1].cnt3 ;i ++){
ans = ans * 3 % mod;
}
printf("%lld\n",ans % mod);
}
}
差分代码
#include<iostream>
#include<cstdio> //EOF,NULL
#include<cstring> //memset
#include<cstdlib> //rand,srand,system,itoa(int),atoi(char[]),atof(),malloc
#include<cmath> //ceil,floor,exp,log(e),log10(10),hypot(sqrt(x^2+y^2)),cbrt(sqrt(x^2+y^2+z^2))
#include<algorithm> //fill,reverse,next_permutation,__gcd,
#include<string>
#include<vector>
#include<queue>
#include<stack>
#include<utility>
#include<iterator>
#include<iomanip> //setw(set_min_width),setfill(char),setprecision(n),fixed,
#include<functional>
#include<map>
#include<set>
#include<limits.h> //INT_MAX
#include<bitset> // bitset<?> n
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;i++)
#define per(i,a,n) for(int i=n-1;i>=a;i--)
#define fori(x) for(int i=0;i<x;i++)
#define forj(x) for(int j=0;j<x;j++)
#define memset(x,y) memset(x,y,sizeof(x))
#define memcpy(x,y) memcpy(x,y,sizeof(y))
#define all(x) x.begin(),x.end()
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef pair<int,int> P;
typedef long long LL;
typedef long long ll;
const double eps=1e-8;
const double PI = acos(1.0);
const int INF = 0x3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int MOD = 1e9+7;
const ll mod = 998244353;
const int MAXN = 1e6+7;
const int maxm = 1;
const int maxn = 100000+10;
int T;
int n,m;
int a,b,x;
int cnt2[maxn],cnt3[maxn];
int tot2[maxn],tot3[maxn];
int main(){
read(T);
while(T--){
memset(cnt2,0);
memset(cnt3,0);
memset(tot2,0);
memset(tot3,0);
read2(n,m) ;
while(m--){
read3(a,b,x);
if(x == 2) {
cnt2[a]++,cnt2[b+1]--;
}
else {
cnt3[a]++,cnt3[b+1]--;
}
}
int min2,min3;
min2 = min3 = inf;
for(int i = 1; i<= n ;i ++){
tot2[i] = tot2[i-1] + cnt2[i];
tot3[i] = tot3[i-1] + cnt3[i];
min2 = min(min2,tot2[i]);
min3 = min(min3,tot3[i]);
}
ll ans = 1;
for(int i = 0 ; i < min2 ;i ++){
ans = ans * 2 % mod;
}
for(int i = 0 ; i < min3 ;i ++){
ans = ans * 3 % mod;
}
cout << ans <<endl;
}
}
Master of GCD 【线段树区间更新 || 差分】的更多相关文章
- upc组队赛2 Master of GCD 【线段树区间更新 || 差分】
Master of GCD 题目描述 Hakase has n numbers in a line. At fi rst, they are all equal to 1. Besides, Haka ...
- HDU 4902 Nice boat 2014杭电多校训练赛第四场F题(线段树区间更新)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4902 解题报告:输入一个序列,然后有q次操作,操作有两种,第一种是把区间 (l,r) 变成x,第二种是 ...
- HDU 1556 Color the ball(线段树区间更新)
Color the ball 我真的该认真的复习一下以前没懂的知识了,今天看了一下线段树,以前只会用模板,现在看懂了之后,发现还有这么多巧妙的地方,好厉害啊 所以就应该尽量搞懂 弄明白每个知识点 [题 ...
- hihoCoder 1080 : 更为复杂的买卖房屋姿势 线段树区间更新
#1080 : 更为复杂的买卖房屋姿势 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho都是游戏迷,“模拟都市”是他们非常喜欢的一个游戏,在这个游戏里面他们 ...
- HDU 5023 A Corrupt Mayor's Performance Art(线段树区间更新)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5023 解题报告:一面墙长度为n,有N个单元,每个单元编号从1到n,墙的初始的颜色是2,一共有30种颜色 ...
- HDU 1698 线段树 区间更新求和
一开始这条链子全都是1 #include<stdio.h> #include<string.h> #include<algorithm> #include<m ...
- POJ-2528 Mayor's posters (线段树区间更新+离散化)
题目分析:线段树区间更新+离散化 代码如下: # include<iostream> # include<cstdio> # include<queue> # in ...
- ZOJ 1610 Count the Colors (线段树区间更新)
题目链接 题意 : 一根木棍,长8000,然后分别在不同的区间涂上不同的颜色,问你最后能够看到多少颜色,然后每个颜色有多少段,颜色大小从头到尾输出. 思路 :线段树区间更新一下,然后标记一下,最后从头 ...
- POJ 2528 Mayor's posters (线段树区间更新+离散化)
题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...
随机推荐
- caffe中通过prototxt文件查看神经网络模型结构的方法
在修改propotxt之前我们可以对之前的网络结构进行一个直观的认识: 可以使用http://ethereon.github.io/netscope/#/editor 这个网址. 将propotxt文 ...
- Unity之如何从fbx提取Animation clip文件
见代码: static void CreateAnim(string fbx, string target) { AnimationClip src = AssetDatabase.LoadAsset ...
- sv命令空间 packge
SV中的module,interface,program,checker,都提供declaration空间,内部定义都local当前的那个scope,相互之间的building block不影响,不识 ...
- uvm设计分析——callback
uvm_callback,设计者在进行class的function设计时,有意留下的一些hook,总是遍历某个pool中的对象: 使用者在使用时,将实现添加到某个pool中: callback中,最重 ...
- Python之描述器
1.描述器的表现 用到三个魔术方法,__get__(), __set__(), __delete__() 方法签名如下 object.__get__(self,instance,owner) obje ...
- Python全栈-异常处理
一.异常 1.异常的定义 异常是错误发生的信号,程序一旦出错就会抛出错误信息,如果不及时处理就会程序就会随之停止运行 异常有三部分组成: 1)异常类型 2)异常追踪 3)异常的值 2.异常的分类 1) ...
- META标签之关键词、网页描述设置帮助SEO网站优化(转)
ASP.NET 4.0 Web Forms针对SEO改进措施中有一个是在Page类中加了2个新属性:MetaKeywords 和MetaDescription,它们使得在后台代码类中用编程的手法设 ...
- HTML5语义化元素
语义化元素:有意义的元素. 对语义化的理解: 正确的标签做正确的事情: HTML5语义化元素让页面内容结构化清晰: 便于开发人员阅读,理解,维护: 搜索引擎爬虫可以依赖语义化元素来确定上下文和每个关键 ...
- Thinking-Bear magic (计算几何)
---- 点我 ---- 题目大意: 给你一个正n边形及边长 a和一个正整数L, 求正多边形的面积s,若s大于L,则连接相邻两边的中点,形成新的正多边形,重复这个操作直至s小于L:如图: 正多边形的面 ...
- UIView的背景颜色
一个UIColor代表一种颜色,通过UIColor的类方法,可以获得很多常用的颜色 + (UIColor *)blackColor; // 0.0 white 黑色 + (UIColor * ...