[HNOI2015]亚瑟王

题目描述

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。

作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验。

本题中我们将考虑游戏的一个简化版模型。 玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为 1 ~ n。本题中,顺序已经确定,即为输入的顺序。每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。 一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌:

1如果这张卡牌在这一局游戏中已经发动过技能,则

1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 否则(是最后一张),结束这一轮游戏。

2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张

2.1将其以 pi的概率发动技能。

2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。

2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,考虑下一张卡牌。

请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。

输入输出格式

输入格式:

输入文件的第一行包含一个整数 T,代表测试数据组数。 接下来一共 T 组数据。 每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和游戏的轮数。 接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。

输出格式:

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。建议输出10 位小数。

输入输出样例

输入样例#1:

1
3 2
0.5000 2
0.3000 3
0.9000 1
输出样例#1:

3.2660250000

说明

一共有 13 种可能的情况:

  1. 第一轮中,第 1张卡牌发动技能;第二轮中,第 2张卡牌发动技能;

概率为 0.15,伤害为5。

  1. 第一轮中,第 1张卡牌发动技能;第二轮中,第 3张卡牌发动技能;

概率为 0.315,伤害为3。

  1. 第一轮中,第 1张卡牌发动技能;第二轮不发动技能;

概率为 0.035,伤害为2。

  1. 第一轮中,第 2张卡牌发动技能;第二轮中,第 1张卡牌发动技能;

概率为 0.075,伤害为5。

  1. 第一轮中,第 2张卡牌发动技能;第二轮中,第 3张卡牌发动技能;

概率为 0.0675,伤害为4。

  1. 第一轮中,第 2张卡牌发动技能;第二轮不发动技能;

概率为 0.0075,伤害为3。

  1. 第一轮中,第 3张卡牌发动技能;第二轮中,第 1张卡牌发动技能;

概率为 0.1575,伤害为3。

  1. 第一轮中,第 3张卡牌发动技能;第二轮中,第 2张卡牌发动技能;

概率为 0.04725,伤害为4。

  1. 第一轮中,第 3张卡牌发动技能;第二轮不发动技能;

概率为 0.11025,伤害为1。

  1. 第一轮不发动技能;第二轮中,第 1张卡牌发动技能;

概率为 0.0175,伤害为2。

  1. 第一轮不发动技能;第二轮中,第 2张卡牌发动技能;

概率为 0.00525,伤害为3。

  1. 第一轮不发动技能;第二轮中,第 3张卡牌发动技能;

概率为 0.011025,伤害为1。

  1. 第一轮不发动技能;第二轮亦不发动技能;

概率为 0.001225,伤害为0。

造成伤害的期望值为概率与对应伤害乘积之和,为 3.266025。

对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0 < pi < 1, 0 <= di <= 1000。

除非备注中有特殊说明,数据中 pi与di均为随机生成。

请注意可能存在的实数精度问题,并采取适当措施。

做了这题发现自己实在是太弱了......被狂虐......

当我忍不住看了各路dalao的题解后,搞了好久才搞懂......

用各路dalao的说法,这题的难点就是约束条件很坑,每张牌最多只能用一次,且如果出了某张牌,这一轮就结束了,这个条件很无奈...

dalao们教我将R伦看成R个机会,每一张牌对每一个机会都有一定的概率可以拿,最后要求出收益的期望.

那么,我们设f[i][j]表示第i张牌获得了j次机会的概率.那么有两种情况:

f[i+1][j]+=f[i][j]*(1-p[i])^j(即第i张牌并没有在j轮内打出的概率,即把每一轮都不打出的概率相乘得到)

f[i+1][j-1]+=f[i][j]*(1-(1-p[i])^j)(即第i张牌在j轮内打出的概率)

最后枚举每一个(i,j),ans+=f[i][j]*(1-(1-p[i])^j)*d[i].

 #include<cstdio>
 #include<cstring>
 #include<algorithm>
 #include<cmath>
 using namespace std;
 ;
 int n,rnd,D[maxn];
 double P[maxn],f[maxn][maxn],pw[maxn][maxn],ans;
 int main(){
     int Tt; scanf("%d",&Tt);
     ; Ts<=Tt; Ts++){
         scanf("%d%d",&n,&rnd);
         ; i<=n; i++) scanf("%lf%d",&P[i],&D[i]);
         ; i<=n; i++){
             pw[i][]=1.0-P[i];
             ; j<=rnd; j++) pw[i][j]=pw[i][j-]*(1.0-P[i]);
         }
         memset(f,,][rnd]=,ans=;
         ; i<n; i++)
             ; j<=rnd; j++) f[i+][j]+=f[i][j]*pw[i][j],f[i+][j-]+=f[i][j]*(-pw[i][j]);
         ; i<=n; i++)
             ; j<=rnd; j++) ans+=f[i][j]*(-pw[i][j])*D[i];
         printf("%.10lf\n",ans);
     }
     ;
 }

我太弱了......

[洛谷 P3239] [HNOI2015]亚瑟王的更多相关文章

  1. 洛谷P3239 [HNOI2015]亚瑟王

    题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能 ...

  2. 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)

    题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...

  3. 洛谷P3239 [HNOI2015]亚瑟王(期望dp)

    传送门 stdcall大佬好强 期望的姿势不是很高……据大佬说期望有一个线性性质,也就是说可以把每一张牌的期望伤害算出来然后再加起来就是总的期望伤害 因为每一张牌只能用一次,我们设$dp[i]$表示第 ...

  4. 洛谷 P3239 [HNOI2015]亚瑟王(期望+dp)

    题面传送门 感觉是道挺好的题,可惜当时没写题解来着的? 根据期望的线性公式,我们求出每个卡牌被发动的概率 \(q_i\),然后 \[ans=\sum\limits_{i=1}^np_id_i \] 于 ...

  5. P3239 [HNOI2015]亚瑟王——概率DP

    题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每 ...

  6. P3239 [HNOI2015]亚瑟王 期望dp

    这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...

  7. P3239 [HNOI2015]亚瑟王 期望 dp

    LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...

  8. Luogu P3239 [HNOI2015]亚瑟王

    题目链接 \(Click\) \(Here\) 期望神题.最开始一直尝试推朴素一点的,逻辑上的\(DP\)式子,后来发现一直出锅,可能是我的式子没容斥对... 题解中给出的想法是这样的: 首先,如果直 ...

  9. P3239 [HNOI2015]亚瑟王

    思路 神仙概率dp 由于期望的线性性质,能够想到最后要求的期望价值就是把每个卡牌发动的概率\(g_i\)乘上伤害\(val_i\)之后加到一起 然后怎么求\(g_i\)呢,肯定是要dp的 我想了例如d ...

随机推荐

  1. 关于jQ的Ajax操作

    jQ的Ajax操作 什么是AJAX AJAX = 异步的javascript和XML(Asynchronous Javascript and XML) 它不是一门编程语言,而是利用JavaScript ...

  2. Jenkins参数化构建(一)之 Maven Command Line传递TestNG构建参数

    1. Maven使用 -D参数名称 将参数传递至所运行项目 Maven指定TestNg.xml文件 clean test -DsuiteXmlFile=src/main/resources/testn ...

  3. 【Ruby】【变量】

    知识点[Ruby 中$开头的全局变量.内部变量.隐藏变量介绍] Ruby 中充满了一系列的隐藏变量,我们可以从这些预定义的全局变量中获取一些有意思的信息. 全局进程变量 $$ 表示当前运行的 ruby ...

  4. C# 整理DotNetBar中SuperGridControl的一些基础属性

    //控制表格只能选中单行 superGridControl1.PrimaryGrid.MultiSelect = false; superGridControl1.PrimaryGrid.Initia ...

  5. Oracle(限定查询2)

    3.2 对数据进行限定查询 在标准SQL之中定义了许多的运算符. 3.2.1.关系运算符 范例: 范例: 范例: 在使用关系运算符判断字符数据的时候注意大小写的编写问题.因为Oracle是区分大小写的 ...

  6. C++.构造函数(超出范围)_01

    环境:Win7x64.Qt5.3.2 MSVC2010 OpenGL.vs2010 1.ZC:在 构造函数 中,基类访问子类的成员 会报内存错误,如果访问的是 基本类型的话(如int) 可能还不会出错 ...

  7. 《剑指offer》第四十一题(数据流中的中位数)

    // 面试题41:数据流中的中位数 // 题目:如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么 // 中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值, // ...

  8. java.lang.RuntimeException: com.netflix.client.ClientException: Load balancer does not have available server for client: service-one

    一.异常信息 java.lang.RuntimeException: com.netflix.client.ClientException: Load balancer does not have a ...

  9. You Don't Know JS: Scope & Closures (第4章: Hoisting)

    Chapter4: Hoisting 变量附加到哪个层次的scope,由它们在哪里和如何声明(let, var)来决定. Function scope/Block scope都有相同的法则:任何变量在 ...

  10. 蓝鲸DevOps深度解析系列(1):蓝盾平台总览

    ​​关注嘉为科技,获取运维新知 2018年10月,嘉为科技与腾讯云.蓝鲸智云携手,在北京.上海.广州.深圳举办 “研运一体,数据驱动,让运维走向运营”为主题的分享会,来自金融.电力.能源.制造等行业的 ...