原文地址:

https://www.cnblogs.com/pinard/p/9669263.html

-----------------------------------------------------------------------------------------------------

强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-Learning算法。

    Q-Learning这一篇对应Sutton书的第六章部分和UCL强化学习课程的第五讲部分。

1. Q-Learning算法的引入    

这一类强化学习的问题求解不需要环境的状态转化模型,是不基于模型的强化学习问题求解方法。对于它的控制问题求解,和蒙特卡罗法类似,都是价值迭代,即通过价值函数的更新,来更新策略,通过策略来产生新的状态和即时奖励,进而更新价值函数。一直进行下去,直到价值函数和策略都收敛。

再回顾下时序差分法的控制问题,可以分为两类,一类是在线控制,即一直使用一个策略来更新价值函数和选择新的动作,比如我们上一篇讲到的SARSA, 而另一类是离线控制,会使用两个控制策略,一个策略用于选择新的动作,另一个策略用于更新价值函数。这一类的经典算法就是Q-Learning。

对于Q-Learning,我们会使用ε-贪婪法来选择新的动作,这部分和SARSA完全相同。但是对于价值函数的更新,Q-Learning使用的是贪婪法,而不是SARSA的ε-贪婪法。这一点就是SARSA和Q-Learning本质的区别。

2. Q-Learning算法概述

    Q-Learning算法的拓补图入下图所示:

    下面我们对Q-Learning算法做一个总结。

3. Q-Learning算法流程

    下面我们总结下Q-Learning算法的流程。

4. Q-Learning算法实例:Windy GridWorld

我们还是使用和SARSA一样的例子来研究Q-Learning。如果对windy gridworld的问题还不熟悉,可以复习强化学习(六)时序差分在线控制算法SARSA第4节的第二段。

完整的代码参见我的github: https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/q_learning_windy_world.py

    绝大部分代码和SARSA是类似的。这里我们可以重点比较和SARSA不同的部分。区别都在episode这个函数里面。

# play for an episode
def episode(q_value):
# track the total time steps in this episode
time = 0 # initialize state
state = START while state != GOAL:
# choose an action based on epsilon-greedy algorithm
if np.random.binomial(1, EPSILON) == 1:
action = np.random.choice(ACTIONS)
else:
values_ = q_value[state[0], state[1], :]
action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)])

        next_state = step(state, action)
def step(state, action):
i, j = state
if action == ACTION_UP:
return [max(i - 1 - WIND[j], 0), j]
elif action == ACTION_DOWN:
return [max(min(i + 1 - WIND[j], WORLD_HEIGHT - 1), 0), j]
elif action == ACTION_LEFT:
return [max(i - WIND[j], 0), max(j - 1, 0)]
elif action == ACTION_RIGHT:
return [max(i - WIND[j], 0), min(j + 1, WORLD_WIDTH - 1)]
else:
assert False

values_ = q_value[next_state[0], next_state[1], :]
next_action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)]) # Sarsa update
q_value[state[0], state[1], action] += \
ALPHA * (REWARD + q_value[next_state[0], next_state[1], next_action] -
q_value[state[0], state[1], action])
state = next_state

    跑完完整的代码,大家可以很容易得到这个问题的最优解,进而得到在每个格子里的最优贪婪策略。

5. SARSA vs Q-Learning

现在SARSA和Q-Learning算法我们都讲完了,那么作为时序差分控制算法的两种经典方法吗,他们都有说明特点,各自适用于什么样的场景呢?

另外一个就是Q-Learning直接学习最优策略,但是最优策略会依赖于训练中产生的一系列数据,所以受样本数据的影响较大,因此受到训练数据方差的影响很大,甚至会影响Q函数的收敛。Q-Learning的深度强化学习版Deep Q-Learning也有这个问题。

在学习过程中,SARSA在收敛的过程中鼓励探索,这样学习过程会比较平滑,不至于过于激进,导致出现像Q-Learning可能遇到一些特殊的最优“陷阱”。比如经典的强化学习问题"Cliff Walk"

在实际应用中,如果我们是在模拟环境中训练强化学习模型,推荐使用Q-Learning,    如果是在线生产环境中训练模型,则推荐使用SARSA

6. Q-Learning结语        

对于Q-Learning和SARSA这样的时序差分算法,对于小型的强化学习问题是非常灵活有效的,但是在大数据时代,异常复杂的状态和可选动作,使Q-Learning和SARSA要维护的Q表异常的大,甚至远远超出内存,这限制了时序差分算法的应用场景。在深度学习兴起后,基于深度学习的强化学习开始占主导地位,因此从下一篇开始我们开始讨论深度强化学习的建模思路。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

-----------------------------------------------------------------------------------------

【转载】 强化学习(七)时序差分离线控制算法Q-Learning的更多相关文章

  1. 强化学习(七)时序差分离线控制算法Q-Learning

    在强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-Learn ...

  2. 【转载】 强化学习(六)时序差分在线控制算法SARSA

    原文地址: https://www.cnblogs.com/pinard/p/9614290.html ------------------------------------------------ ...

  3. 强化学习(六)时序差分在线控制算法SARSA

    在强化学习(五)用时序差分法(TD)求解中,我们讨论了用时序差分来求解强化学习预测问题的方法,但是对控制算法的求解过程没有深入,本文我们就对时序差分的在线控制算法SARSA做详细的讨论. SARSA这 ...

  4. 强化学习8-时序差分控制离线算法Q-Learning

    Q-Learning和Sarsa一样是基于时序差分的控制算法,那两者有什么区别呢? 这里已经必须引入新的概念 时序差分控制算法的分类:在线和离线 在线控制算法:一直使用一个策略选择动作和更新价值函数, ...

  5. 强化学习4-时序差分TD

    之前讲到强化学习在不基于模型时可以用蒙特卡罗方法求解,但是蒙特卡罗方法需要在每次采样时生产完整序列,而在现实中,我们很可能无法生成完整序列,那么又该如何解决这类强化学习问题呢? 由贝尔曼方程 vπ(s ...

  6. 强化学习七 - Policy Gradient Methods

    一.前言 之前我们讨论的所有问题都是先学习action value,再根据action value 来选择action(无论是根据greedy policy选择使得action value 最大的ac ...

  7. 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)

    强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...

  8. 强化学习之 免模型学习(model-free based learning)

    强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现 ...

  9. Flink + 强化学习 搭建实时推荐系统

    如今的推荐系统,对于实时性的要求越来越高,实时推荐的流程大致可以概括为这样: 推荐系统对于用户的请求产生推荐,用户对推荐结果作出反馈 (购买/点击/离开等等),推荐系统再根据用户反馈作出新的推荐.这个 ...

随机推荐

  1. Cassandra标准列和超级列

    列(column)是Cassandra数据模型中的最基本的数据结构单元.列是一个由列名(key).值(value).时间戳(timestamp)构成的三元组.在关系型数据库中,你需要先定义列的名称和和 ...

  2. Shiro集成web环境[Springboot]-基础使用

    Shiro集成web环境[Springboot] 1.shiro官网查找依赖的jar,其中shiro-ehcache做授权缓存时使用,另外还需要导入ehcache的jar包 <dependenc ...

  3. JavaScript基础(三)

    十三.JS中的面向对象 创建对象的几种常用方式 1.使用Object或对象字面量创建对象 2.工厂模式创建对象 3.构造函数模式创建对象 4.原型模式创建对象 1.使用Object或对象字面量创建对象 ...

  4. hdu-1176免费馅饼

    免费馅饼 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  5. hearbeat of RAC

    Heartbeat is a pooling mechanism in clustered platforms to verify if the other server participating ...

  6. 使用AndroidStudio运行eclipse开发的app项目

    由于AS和eclipse开发的APP项目格式不同,所以直接用AS运行eclipse项目是行不通的. 下面给大家讲解一下如何在AS上成功运行eclipse项目 首先有这么个eclipse项目文件夹 然后 ...

  7. Win10系列:UWP界面布局基础4

    类型转换 前面讲到过,在定义元素时可以通过Attributes特性方式为其设置属性并为属性赋值,在实际开发中所赋予的值可能和属性本身的数据类型不相符,这时XAML解析器就会使用类型转换器(Type C ...

  8. 架构之路:nginx与IIS服务器搭建集群实现负载均衡(一)

    最近亮亮在研究IIS的负载均衡!本人由于初出茅庐,防骗意识薄弱,一不小心被亮亮坑上了IIS负载均衡之路(亮亮是真黑哈!).前车之鉴啊!小伙伴们要小心.不过既上了贼船,便决定一条道走到黑.于是乎从大前天 ...

  9. jvm常用参数

    -Xms512m:初始堆内存 -Xmx512m:最大堆内存 -XX:PermSize=256m:初始永久代内存(方法区,非堆) -XX:MaxPermSize=256m:最大永久代内存(方法区,非堆) ...

  10. [CodeForces332E]Binary Key

    Problem 题目给出一个加密前的字符串长度为p和加密后的字符串长度为s,让你求一个长度为K字典序最小的密钥. 密钥是循环的,第i位为1表示加密前的第i为是有用的否则是没用的. Solution 首 ...