【转载】 强化学习(七)时序差分离线控制算法Q-Learning
原文地址:
https://www.cnblogs.com/pinard/p/9669263.html
-----------------------------------------------------------------------------------------------------
在强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-Learning算法。
Q-Learning这一篇对应Sutton书的第六章部分和UCL强化学习课程的第五讲部分。
1. Q-Learning算法的引入

这一类强化学习的问题求解不需要环境的状态转化模型,是不基于模型的强化学习问题求解方法。对于它的控制问题求解,和蒙特卡罗法类似,都是价值迭代,即通过价值函数的更新,来更新策略,通过策略来产生新的状态和即时奖励,进而更新价值函数。一直进行下去,直到价值函数和策略都收敛。
再回顾下时序差分法的控制问题,可以分为两类,一类是在线控制,即一直使用一个策略来更新价值函数和选择新的动作,比如我们上一篇讲到的SARSA, 而另一类是离线控制,会使用两个控制策略,一个策略用于选择新的动作,另一个策略用于更新价值函数。这一类的经典算法就是Q-Learning。
对于Q-Learning,我们会使用ε-贪婪法来选择新的动作,这部分和SARSA完全相同。但是对于价值函数的更新,Q-Learning使用的是贪婪法,而不是SARSA的ε-贪婪法。这一点就是SARSA和Q-Learning本质的区别。
2. Q-Learning算法概述
Q-Learning算法的拓补图入下图所示:





下面我们对Q-Learning算法做一个总结。
3. Q-Learning算法流程
下面我们总结下Q-Learning算法的流程。

4. Q-Learning算法实例:Windy GridWorld
我们还是使用和SARSA一样的例子来研究Q-Learning。如果对windy gridworld的问题还不熟悉,可以复习强化学习(六)时序差分在线控制算法SARSA第4节的第二段。
完整的代码参见我的github: https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/q_learning_windy_world.py
绝大部分代码和SARSA是类似的。这里我们可以重点比较和SARSA不同的部分。区别都在episode这个函数里面。

# play for an episode
def episode(q_value):
# track the total time steps in this episode
time = 0 # initialize state
state = START while state != GOAL:
# choose an action based on epsilon-greedy algorithm
if np.random.binomial(1, EPSILON) == 1:
action = np.random.choice(ACTIONS)
else:
values_ = q_value[state[0], state[1], :]
action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)])

next_state = step(state, action)
def step(state, action):
i, j = state
if action == ACTION_UP:
return [max(i - 1 - WIND[j], 0), j]
elif action == ACTION_DOWN:
return [max(min(i + 1 - WIND[j], WORLD_HEIGHT - 1), 0), j]
elif action == ACTION_LEFT:
return [max(i - WIND[j], 0), max(j - 1, 0)]
elif action == ACTION_RIGHT:
return [max(i - WIND[j], 0), min(j + 1, WORLD_WIDTH - 1)]
else:
assert False

values_ = q_value[next_state[0], next_state[1], :]
next_action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)]) # Sarsa update
q_value[state[0], state[1], action] += \
ALPHA * (REWARD + q_value[next_state[0], next_state[1], next_action] -
q_value[state[0], state[1], action])
state = next_state
跑完完整的代码,大家可以很容易得到这个问题的最优解,进而得到在每个格子里的最优贪婪策略。
5. SARSA vs Q-Learning
现在SARSA和Q-Learning算法我们都讲完了,那么作为时序差分控制算法的两种经典方法吗,他们都有说明特点,各自适用于什么样的场景呢?

另外一个就是Q-Learning直接学习最优策略,但是最优策略会依赖于训练中产生的一系列数据,所以受样本数据的影响较大,因此受到训练数据方差的影响很大,甚至会影响Q函数的收敛。Q-Learning的深度强化学习版Deep Q-Learning也有这个问题。
在学习过程中,SARSA在收敛的过程中鼓励探索,这样学习过程会比较平滑,不至于过于激进,导致出现像Q-Learning可能遇到一些特殊的最优“陷阱”。比如经典的强化学习问题"Cliff Walk"
在实际应用中,如果我们是在模拟环境中训练强化学习模型,推荐使用Q-Learning, 如果是在线生产环境中训练模型,则推荐使用SARSA。
6. Q-Learning结语
对于Q-Learning和SARSA这样的时序差分算法,对于小型的强化学习问题是非常灵活有效的,但是在大数据时代,异常复杂的状态和可选动作,使Q-Learning和SARSA要维护的Q表异常的大,甚至远远超出内存,这限制了时序差分算法的应用场景。在深度学习兴起后,基于深度学习的强化学习开始占主导地位,因此从下一篇开始我们开始讨论深度强化学习的建模思路。
(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)
-----------------------------------------------------------------------------------------
【转载】 强化学习(七)时序差分离线控制算法Q-Learning的更多相关文章
- 强化学习(七)时序差分离线控制算法Q-Learning
在强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-Learn ...
- 【转载】 强化学习(六)时序差分在线控制算法SARSA
原文地址: https://www.cnblogs.com/pinard/p/9614290.html ------------------------------------------------ ...
- 强化学习(六)时序差分在线控制算法SARSA
在强化学习(五)用时序差分法(TD)求解中,我们讨论了用时序差分来求解强化学习预测问题的方法,但是对控制算法的求解过程没有深入,本文我们就对时序差分的在线控制算法SARSA做详细的讨论. SARSA这 ...
- 强化学习8-时序差分控制离线算法Q-Learning
Q-Learning和Sarsa一样是基于时序差分的控制算法,那两者有什么区别呢? 这里已经必须引入新的概念 时序差分控制算法的分类:在线和离线 在线控制算法:一直使用一个策略选择动作和更新价值函数, ...
- 强化学习4-时序差分TD
之前讲到强化学习在不基于模型时可以用蒙特卡罗方法求解,但是蒙特卡罗方法需要在每次采样时生产完整序列,而在现实中,我们很可能无法生成完整序列,那么又该如何解决这类强化学习问题呢? 由贝尔曼方程 vπ(s ...
- 强化学习七 - Policy Gradient Methods
一.前言 之前我们讨论的所有问题都是先学习action value,再根据action value 来选择action(无论是根据greedy policy选择使得action value 最大的ac ...
- 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)
强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...
- 强化学习之 免模型学习(model-free based learning)
强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现 ...
- Flink + 强化学习 搭建实时推荐系统
如今的推荐系统,对于实时性的要求越来越高,实时推荐的流程大致可以概括为这样: 推荐系统对于用户的请求产生推荐,用户对推荐结果作出反馈 (购买/点击/离开等等),推荐系统再根据用户反馈作出新的推荐.这个 ...
随机推荐
- jquery 学习(一):jQuery 简介
jQuery 库 - 特性: jQuery 是一个 JavaScript 函数库. jQuery 库包含以下特性: html 元素获取, html 元素操作, css 操作, html 事件函数, J ...
- django学习之——模版
为了减少模板加载调用过程及模板本身的冗余代码,Django 提供了一种使用方便且功能强大的 API ,用于从磁盘中加载模板, 要使用此模板加载API,首先你必须将模板的保存位置告诉框架. 设置的保存文 ...
- (Nginx反向代理+NFS共享网页根目录)自动部署及可用性检测
1.nginx反向代理安装配置 #!/usr/bin/bash if [ -e /etc/nginx/nginx.conf ] then echo 'Already installed' exit e ...
- sql取大的一个值
select b.*, a.recid, a.keyno from product b, (select pcode, ...
- 读入excle
可以输出到csv(逗号间隔,具体搜索csv格式). csv可以在excel中直接导入. 也可以用system函数调用ssconvert从csv转xlsx:system("ssconvert ...
- Saiku缓存处理(七)
Saiku缓存处理方案 Saiku默认是从缓存中读取数据的(如果缓存中有数据的话),所以用户看到的数据不一定是最新的,如果需要看到最新的的数据需要手动刷新数据或者更改配置信息. Saiku获取实时数据 ...
- Saiku二次开发获取源代码在本地编译(五)
关于Saiku的二次开发,在本地编译然后启动自己编译好的Saiku服务 Saiku是开源的,从github上能下载源代码,本例中的saiku源码也是从github上找的,然后自己改了一些pom.xml ...
- day24 模块03_re
休养生息 --模块03 1.正则表达式 2.在python中使用正则.re 一,正则表达式 (匹配字符串,主要是给字符串使用的) 1)元字符 . 除换行符之外 \w 数字,字母,下划线组成 \W ...
- 卷积与反卷积以及步长stride
1. 卷积与反卷积 如上图演示了卷积核反卷积的过程,定义输入矩阵为 I(4×4),卷积核为 K(3×3),输出矩阵为 O(2×2): 卷积的过程为:Conv(I,W)=O 反卷积的过称为:Deconv ...
- gensim做主题模型
作为Python的一个库,gensim给了文本主题模型足够的方便,像他自己的介绍一样,topic modelling for humans 具体的tutorial可以参看他的官方网页,当然是全英文的, ...