【bzoj1475】方格取数 网络流最小割
题目描述
在一个n*n的方格里,每个格子里都有一个正整数。从中取出若干数,使得任意两个取出的数所在格子没有公共边,且取出的数的总和尽量大。
输入
第一行一个数n;(n<=30) 接下来n行每行n个数描述一个方阵
输出
仅一个数,即最大和
样例输入
2
1 2
3 5
样例输出
6
题解
网络流最小割
将原图黑白染色,分别和源点和汇点连边,容量为原数;相邻的点连边,容量为inf。
答案为sum-mincut。
#include <cstdio>
#include <cstring>
#include <queue>
#define N 1000
#define M 10000
#define inf 0x7fffffff
#define pos(i , j) (i - 1) * n + j
using namespace std;
queue<int> q;
int map[35][35] , head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , i , j , sum = 0;
scanf("%d" , &n) , s = 0 , t = n * n + 1;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%d" , &map[i][j]) , sum += map[i][j];
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= n ; j ++ )
{
if((i + j) % 2 == 0)
{
add(s , pos(i , j) , map[i][j]);
if(i > 1) add(pos(i , j) , pos(i - 1 , j) , inf);
if(i < n) add(pos(i , j) , pos(i + 1 , j) , inf);
if(j > 1) add(pos(i , j) , pos(i , j - 1) , inf);
if(j < n) add(pos(i , j) , pos(i , j + 1) , inf);
}
else add(pos(i , j) , t , map[i][j]);
}
}
while(bfs()) sum -= dinic(s , inf);
printf("%d\n" , sum);
return 0;
}
【bzoj1475】方格取数 网络流最小割的更多相关文章
- [BZOJ1475]方格取数 网络流 最小割
1475: 方格取数 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1025 Solved: 512[Submit][Status][Discuss] ...
- HDU 1569 方格取数(2) (最小割)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- luogu2774 [网络流24题]方格取数问题 (最小割)
常见套路:棋盘黑白染色,就变成了一张二分图 然后如果选了黑点,四周的白点就不能选了,也是最小割的套路.先把所有价值加起来,再减掉一个最少的不能选的价值,也就是割掉表示不选 建边(S,黑点i,v[i]) ...
- LuoguP2774 方格取数问题(最小割)
题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于 ...
- 洛谷P2774 方格取数问题(最小割)
题意 $n \times m$的矩阵,不能取相邻的元素,问最大能取多少 Sol 首先补集转化一下:最大权值 = sum - 使图不连通的最小权值 进行黑白染色 从S向黑点连权值为点权的边 从白点向T连 ...
- BZOJ 1475: 方格取数( 网络流 )
本来想写道水题....结果调了这么久!就是一个 define 里面少加了个括号 ! 二分图最大点权独立集...黑白染色一下 , 然后建图 : S -> black_node , white_no ...
- [网络流24题#9] [cogs734] 方格取数 [网络流,最大流最小割]
将网格分为两部分,方法是黑白染色,即判断(i+j)&1即可,分开后从白色格子向黑色格子连边,每个点需要四条(边界点可能更少),也就是每个格子周围的四个方向.之后将源点和汇点分别于黑白格子连边, ...
- P2774 方格取数(网络流)
https://www.luogu.com.cn/problem/P2774 在一个有 m×n 个方格的棋盘中,每个方格中有一个正整数. 现要从方格中取数,使任意2个数所在方格没有公共边,且取出的数的 ...
- BZOJ1324Exca王者之剑&BZOJ1475方格取数——二分图最大独立集
题目描述 输入 第一行给出数字N,M代表行列数.N,M均小于等于100 下面N行M列用于描述数字矩阵 输出 输出最多可以拿到多少块宝石 样例输入 2 2 1 2 2 1 样例输出 4 题意就是 ...
随机推荐
- 【洛谷2633】Count on a tree(树上主席树)
点此看题面 大致题意: 给你一棵树,每次问你两点之间第\(k\)小的点权,强制在线. 主席树 这种题目强制在线一般就是数据结构了. 而看到区间第\(k\)小,很容易就能想到主席树. 至少不会有人想到树 ...
- vitrual box安装centos时一直黑屏的解决办法
趁着清明节没事,昨天看了mysql性能优化后,想装个linux系统学习下,linux一直是我的短板...之前是在vmware上安装ubuntu,买了新电脑后,听过virtual box相比vmware ...
- 判断浏览器环境(QQ,微信,安卓设备,IOS设备,PC微信环境,移动设备)
判断浏览器环境(QQ,微信,安卓设备,IOS设备,PC微信环境,移动设备) // ===== 判断浏览器环境 ===== // // 判断是否是QQ环境 function isQQ() { retur ...
- 原生node实现本地静态页面的展示
var http = require("http"); var fs = require("fs"); var url = require("url& ...
- 科学计算库Numpy——排序
矩阵按维度排序 使用np.sort()进行排序. 排序索引值 使用np.argsort()排序,返回排序后的索引值. 备注:array1[1,2]=1.2,array1[1,0]=5.6,array1 ...
- Codeforces Round #460 (Div. 2)-C. Seat Arrangements
C. Seat Arrangements time limit per test1 second memory limit per test256 megabytes Problem Descript ...
- 从头开始学习数据库及ADO.NET——竹子整理
目前为止,学习编程一年有余,写过管理系统,写过商城,写过桌面,接触的多了,乱七八糟的点太多,一堆前段框架,后台类库,纷纷杂杂,更新迭代之快也是令人咋舌.于是我就在想,作为一名程序员,哪些内容是实打实的 ...
- Hive 分析函数lead、lag实例应用
Hive的分析函数又叫窗口函数,在oracle中就有这样的分析函数,主要用来做数据统计分析的. Lag和Lead分析函数可以在同一次查询中取出同一字段的前N行的数据(Lag)和后N行的数据(Lead) ...
- SpringCloud 微服务一:spring boot 基础项目搭建
spring cloud是建立在spring boot的基础上的,而之前虽然听说过,也随便看了一下spring boot,却没有真正使用,因此还必须先花时间学一下spring boot. spring ...
- Python基础闯关失败总结
对列表进行创建切片增删改查 对列表进行创建 L1 = [] # 定义L1 为一个空列表 List() #创建List 空列表 对列表进行查询 L2 = ['a','b','c','d','a','e ...