fzu 1753 质因数的应用
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
xtt最近学习了高斯消元法解方程组,现在他的问题来了,如果是以下的方程,那么应该如何解呢?
C(n1,m1)==0 (mod M)
C(n2,m2)==0 (mod M)
C(n3,m3)==0 (mod M)
................
C(nk,mk)==0 (mod M)
xtt希望你告诉他满足条件的最大的M
其中C(i,j)表示组合数,例如C(5,2)=10,C(4,2)=6...
Input
输入数据包括多组,每组数据的第一行是一个正整数T(1<=T<=150)表示接下来描述的T个方程
接下来T行,每行包括2个正整数ni,mi (1<=mi<=ni<=100000)
Output
输出一行答案,表示满足方程组的最大M。
Sample Input
3
100 1
50 1
60 1
Sample Output
10
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std; typedef __int64 LL;
const int maxn=1e5+;
int prime[],num,n[],m[];
bool flag[maxn]; void init()
{
memset(flag,true,sizeof(flag));
int i,j;num=;
for(i=;i<maxn;i++)
{
if(flag[i]) prime[num++]=i;
for(j=;j<num&&i*prime[j]<maxn;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==) break;
}
}
} int factor(int a,int b)
{
int sum=;
while(b)
{
sum+=b/a;
b/=a;
}
return sum;
} int getfactor(int i,int j)
{
int sum=factor(prime[i],n[j]);
sum-=factor(prime[i],m[j]);
sum-=factor(prime[i],n[j]-m[j]);
return sum;
} LL mypow(LL a,LL b)
{
LL ret=;
while(b)
{
if(b&) ret*=a;
a*=a;
b>>=;
}
return ret;
} LL solve(int n,int MAX)
{
LL ans=;
for(int i=;i<num&&prime[i]<=MAX;i++)
{
int min=,c;
for(int j=;j<n;j++)
{
c=getfactor(i,j);
min=min<c?min:c;
}
ans*=mypow(prime[i],min);
}
return ans;
} int main()
{
init();
int i,t,MIN;
while(~scanf("%d",&t))
{
MIN=1e9;
for(i=;i<t;i++)
{
scanf("%d %d",n+i,m+i);
MIN=MIN<n[i]?MIN:n[i];
}
printf("%I64d\n",solve(t,MIN));
}
return ;
}
fzu 1753 质因数的应用的更多相关文章
- FZU 1753
题目的思路还是很简单的,找出这些组合数中最大的公约数: 其中C(n,k)=n ! /k!/(n-k)! 所以枚举每个素因数,用(n!)的减去(k!)和(n-k)!的就行了... 最后取每组的最小值 # ...
- fzu 1753 Another Easy Problem
本题题意为求 t (t<150) 个 c (n,m) (1<=m<=n<=100000)的最大公因子: 本题的难点为优化.主要有两个优化重点.一是每次对单个素因子进行处理,优 ...
- CSU训练分类
√√第一部分 基础算法(#10023 除外) 第 1 章 贪心算法 √√#10000 「一本通 1.1 例 1」活动安排 √√#10001 「一本通 1.1 例 2」种树 √√#10002 「一本通 ...
- 分解质因数FZU - 1075
题目简述:就是给一个数,把他拆分成多个素数的乘积,这正好是算术基本定理.本题我的解决方法是埃氏素数筛+质因数保存...开始T掉了,是因为我在最后枚举了素数,保存他们的次数,然后两次for去查询他们的次 ...
- upc组队赛16 GCDLCM 【Pollard_Rho大数质因数分解】
GCDLCM 题目链接 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some int ...
- SqlDateTime overflow. Must be between 1/1/1753 12:00:00 AM and 12/31/9999 11:59:59 PM.
相信很多人进行数据存储时,会遇上如标题的异常错误. 其实也不算上一个错误. 当你的程序中有宣告一个字段的数据类型为DateTime时,但你又没有赋值给它,就进行存储时,它就会得到这样一个结果. 看看下 ...
- java分解质因数
package test; import java.util.Scanner; public class Test19 { /** * 分析:对n进行分解质因数,应先找到一个最小的质数k * 最小 ...
- POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 37427 Accepted: 16288 Descr ...
- FZU 2137 奇异字符串 后缀树组+RMQ
题目连接:http://acm.fzu.edu.cn/problem.php?pid=2137 题解: 枚举x位置,向左右延伸计算答案 如何计算答案:对字符串建立SA,那么对于想双延伸的长度L,假如有 ...
随机推荐
- vs2015驱动开发中使用RtlStringCchPrintfW()报错
法一: 在头顶添加一段代码 #pragam comment(lib,"xxxxxx.lib") 法二: 右击工程点属性,选择Linker下的Input,在依赖项后面写上$(DDK_ ...
- 修改Windows默认调试器
程序崩溃时,系统会弹窗让你选择是否进行调试,可以设置系统默认调试器. 注册表位置: HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows NT/CurrentVe ...
- javaweb基础(14)_jsp的原理
一.什么是JSP? JSP全称是Java Server Pages,它和servle技术一样,都是SUN公司定义的一种用于开发动态web资源的技术. JSP这门技术的最大的特点在于,写jsp就像在写h ...
- FastJsonUtils工具类
fastjson是由alibaba开源的一套json处理器.与其他json处理器(如Gson,Jackson等)和其他的Java对象序列化反序列化方式相比,有比较明显的性能优势. 版权声明:本文为博主 ...
- jquery.imgpreload.min.js插件实现页面图片预加载
页面分享地址: http://wenku.baidu.com/link?url=_-G8miwbgDmEj6miyFtjit1duJggBCJmFjR2jky_G1VftD9eS9kwGOlFWAOR ...
- Java-framework-Vaadin
安装vaadin: (1) 首先试了maven+vaadin. 安装maven: 1. unzip apache-maven-3.3.9-bin.zip 2. modify PATH environm ...
- leetcode-11-dfs
DFS算法: explore(G, v) visited(v) = trueprevisit(v) for each edge(v, u) in E: if not visited(u): explo ...
- Linux优化总结
1)netstat (*****)查看网络状态lntup或an 1.[listening|-l] 2.[--numeric|-n] 3.[--tcp|-t] 4.[--udp|-u] 5[--prog ...
- 异常 ndroid.view.InflateException: Binary XML file line #8: Error inflating class com.ouyang.test.MyView
发现自定义view时出现ndroid.view.InflateException: Binary XML file line #8: Error inflating class com.ouyang. ...
- KVO And KVC
http://www.cocoachina.com/industry/20140224/7866.html