fzu 1753 质因数的应用
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
xtt最近学习了高斯消元法解方程组,现在他的问题来了,如果是以下的方程,那么应该如何解呢?
C(n1,m1)==0 (mod M)
C(n2,m2)==0 (mod M)
C(n3,m3)==0 (mod M)
................
C(nk,mk)==0 (mod M)
xtt希望你告诉他满足条件的最大的M
其中C(i,j)表示组合数,例如C(5,2)=10,C(4,2)=6...
Input
输入数据包括多组,每组数据的第一行是一个正整数T(1<=T<=150)表示接下来描述的T个方程
接下来T行,每行包括2个正整数ni,mi (1<=mi<=ni<=100000)
Output
输出一行答案,表示满足方程组的最大M。
Sample Input
3
100 1
50 1
60 1
Sample Output
10
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std; typedef __int64 LL;
const int maxn=1e5+;
int prime[],num,n[],m[];
bool flag[maxn]; void init()
{
memset(flag,true,sizeof(flag));
int i,j;num=;
for(i=;i<maxn;i++)
{
if(flag[i]) prime[num++]=i;
for(j=;j<num&&i*prime[j]<maxn;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==) break;
}
}
} int factor(int a,int b)
{
int sum=;
while(b)
{
sum+=b/a;
b/=a;
}
return sum;
} int getfactor(int i,int j)
{
int sum=factor(prime[i],n[j]);
sum-=factor(prime[i],m[j]);
sum-=factor(prime[i],n[j]-m[j]);
return sum;
} LL mypow(LL a,LL b)
{
LL ret=;
while(b)
{
if(b&) ret*=a;
a*=a;
b>>=;
}
return ret;
} LL solve(int n,int MAX)
{
LL ans=;
for(int i=;i<num&&prime[i]<=MAX;i++)
{
int min=,c;
for(int j=;j<n;j++)
{
c=getfactor(i,j);
min=min<c?min:c;
}
ans*=mypow(prime[i],min);
}
return ans;
} int main()
{
init();
int i,t,MIN;
while(~scanf("%d",&t))
{
MIN=1e9;
for(i=;i<t;i++)
{
scanf("%d %d",n+i,m+i);
MIN=MIN<n[i]?MIN:n[i];
}
printf("%I64d\n",solve(t,MIN));
}
return ;
}
fzu 1753 质因数的应用的更多相关文章
- FZU 1753
题目的思路还是很简单的,找出这些组合数中最大的公约数: 其中C(n,k)=n ! /k!/(n-k)! 所以枚举每个素因数,用(n!)的减去(k!)和(n-k)!的就行了... 最后取每组的最小值 # ...
- fzu 1753 Another Easy Problem
本题题意为求 t (t<150) 个 c (n,m) (1<=m<=n<=100000)的最大公因子: 本题的难点为优化.主要有两个优化重点.一是每次对单个素因子进行处理,优 ...
- CSU训练分类
√√第一部分 基础算法(#10023 除外) 第 1 章 贪心算法 √√#10000 「一本通 1.1 例 1」活动安排 √√#10001 「一本通 1.1 例 2」种树 √√#10002 「一本通 ...
- 分解质因数FZU - 1075
题目简述:就是给一个数,把他拆分成多个素数的乘积,这正好是算术基本定理.本题我的解决方法是埃氏素数筛+质因数保存...开始T掉了,是因为我在最后枚举了素数,保存他们的次数,然后两次for去查询他们的次 ...
- upc组队赛16 GCDLCM 【Pollard_Rho大数质因数分解】
GCDLCM 题目链接 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some int ...
- SqlDateTime overflow. Must be between 1/1/1753 12:00:00 AM and 12/31/9999 11:59:59 PM.
相信很多人进行数据存储时,会遇上如标题的异常错误. 其实也不算上一个错误. 当你的程序中有宣告一个字段的数据类型为DateTime时,但你又没有赋值给它,就进行存储时,它就会得到这样一个结果. 看看下 ...
- java分解质因数
package test; import java.util.Scanner; public class Test19 { /** * 分析:对n进行分解质因数,应先找到一个最小的质数k * 最小 ...
- POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 37427 Accepted: 16288 Descr ...
- FZU 2137 奇异字符串 后缀树组+RMQ
题目连接:http://acm.fzu.edu.cn/problem.php?pid=2137 题解: 枚举x位置,向左右延伸计算答案 如何计算答案:对字符串建立SA,那么对于想双延伸的长度L,假如有 ...
随机推荐
- MySql数据库中where的使用
SELECT * from runoob_tbl WHERE runoob_author='菜鸟教程'; MySQL 的 WHERE 子句的字符串比较是不区分大小写的. 你可以使用 BINARY 关键 ...
- libnet TCP示例
[root@TD18 tmp]#gcc -o .c -lnet [root@TD18 tmp]#./ please enter Host address 11.11.11.11 please ente ...
- Service Mesh是什么技术
https://blog.csdn.net/weixin_38044696/article/details/80257488 Service Mesh是什么技术 2018年05月09日 22:07:4 ...
- thinkcmf5 模板版变量的加载过程 和 新增网站配置项怎么全局使用
1.模板全局配置是怎么加载的 在 HomeBaseController.php 的 fech方法 $more = $this->getThemeFileMore($template); ...
- destoon 配置文件config.inc.php参数说明
$CFG['db_host']数据库服务器,可以包括端口号,一般为localhost $CFG['db_user']数据库用户名,一般为root $CFG['db_pass']数据库密码 $CFG[' ...
- Thonny -- 简洁的 python 轻量级 IDE
Thonny目前是 树莓派 上 默认的 Python 开发环境. 该 IDE 是 Institute of Computer Science of University of Tartu (爱沙尼亚 ...
- Solr 中的 docValues=true
前言: 在Lucene4.x之后,出现一个重大的特性,就是索引支持DocValues,这对于广大的solr和elasticsearch用户,无疑来说是一个福音,这玩意的出现通过牺牲一定的磁盘空间带来 ...
- MIP启发式算法:local branching
*本文主要是记录并分享最近学习到的知识,算不上原创 *参考文献见链接 本文主要是讲述local branching算法,主要以M. Fischetti的论文 “Local braching”和Pier ...
- VSCode编译C/C++(一)MinGW安装配置指南
为什么不用IDE? 更加专业.轻便.其过程对于理解计算机也有更多的帮助 安装过程: 首先进入http://mingw.org/ ,点击右侧最新发布,可以下载,然后安装 点击桌面MinGWInstal ...
- npm 安装express npm ERR! code UNABLE_TO_VERIFY_LEAF_SIGNATURE
npm安装总是报错 报错信息: 解决方案: 在命令行输入: npm config set strict-ssl false 设置之后即可安装软件: