【题解】P5021 赛道修建

二分加贪心,轻松拿省一(我没有QAQ)

题干有提示:

输出格式:

输出共一行,包含一个整数,表示长度最小的赛道长度的最大值。

注意到没,最小的最大值,还要多明显?

那么我们考虑二分。

直接二分答案,假设我们得到了二分答案\(x\),我们就利用这个答案检查是否可行。考虑这样的一种办法,指定一个点为树的根,先将\(dfs\)放下去,每个\(dfs\)都要尽量将这个节点内所有的赛道合成成满足\(\ge x\),并且贡献一条尽量长的赛道上去。假设有一个\(dfs\)表示自己有多于两条多出来的赛道,它们接起来不能满足条件,那么这个答案非法。

#include<iostream>
#include<cstring>
#include<queue>
#include<cstdlib>
#include<vector>
#include<set>
#include<map>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<bitset>
#include<ctime> using namespace std;
#define TMP template < class ins >
#define endl '\n'
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;t++)
#define ERP(t,a) for(register int t=head[(a)];t;t=e[t].nx)
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;t--)
#define more(a,b) (a)=(a)>(b)?(a):(b)
typedef long long ll;
TMP inline ins qr(ins tag) {
char c=getchar();
ins x=0;
int q=0;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
return q==-1?-x:x;
}
const int maxn=50050;
struct E {
int to,w,nx;
} e[maxn<<1];
int head[maxn];
ll d[maxn];
int cnt;
inline void add(int fr,int to,int w,bool f) {
e[++cnt]=(E) {
to,w,head[fr]
};
head[fr]=cnt;
if(f)
add(to,fr,w,0);
}
int n,m;
ll ans;
ll cmp;
#define pb insert
multiset<ll> sav[maxn];
#define tor multiset<ll>::iterator ll dfs(int now,int last) {
if(ans>=m)
return 0;
ERP(t,now) {
if(e[t].to!=last) {
ll temp=dfs(e[t].to,now)+e[t].w;
if(temp>=cmp)
ans++;
else
sav[now].pb(temp);
if(ans>=m)
return 0;
}
}
ll ret=0;
if(sav[now].size()==1)
return max(0ll,*sav[now].begin());
while(sav[now].size()) {
tor b=sav[now].begin();
tor k=sav[now].lower_bound(cmp-(*b));
if(k==sav[now].end()) {
more(ret,*b);
sav[now].erase(b);
continue;
}
if(k==b)
k++;
if(k==sav[now].end()) {
more(ret,*b);
sav[now].erase(b);
continue;
}
ans++;
if(ans>=m)
return 0;
if(k==b)
sav[now].erase(k);
else {
sav[now].erase(k);
sav[now].erase(b);
}
}
return ret;
} inline bool chek(int x) {
RP(t,1,n)
sav[t].clear();
cmp=x;
ans=0;
dfs(1,0);
return ans>=m;
} inline int eff(int rb) {
int lb=1,mid;
do {
mid=(lb+rb)>>1;
//cout<<rb<<' '<<mid<<' '<<lb<<endl;
if(chek(mid))
lb=mid+1;
else
rb=mid-1;
} while(lb<=rb);
return rb;
} void predfs(int now,int last,int w) {
d[now]=d[last]+w;
ERP(t,now)
if(e[t].to!=last)
predfs(e[t].to,now,e[t].w);
}
int t1,t2,t3;
const int inf=0x3f3f3f3f;
inline void init() {
n=qr(1);
m=qr(1);
RP(t,1,n-1) {
t1=qr(1);
t2=qr(1);
t3=qr(1);
add(t1,t2,t3,1);
}
predfs(1,0,0);
ll sav=0,rem=-inf;
RP(t,1,n)
if(d[t]>rem)
sav=t,rem=d[t];
predfs(sav,0,0);
sav=0,rem=-inf;
RP(t,1,n)
if(d[t]>rem)
sav=t,rem=d[t];
cout<<eff(rem)<<endl;
} signed main() {
#ifndef ONLINE_JUDGE
freopen("testdata.in","r",stdin);
freopen("out.out","w",stdout);
#endif
init();
return 0;
}

【题解】 P5021赛道修建的更多相关文章

  1. 二分答案 + multiset || NOIP 2018 D1 T3 || Luogu P5021 赛道修建

    题面:P5021 赛道修建 题解:二分答案,用Dfs进行判断,multiset维护. Dfs(x,fa,Lim)用来计算以x为根的子树中有多少符合条件的路径,并返回剩余未使用的最长路径长. 贪心思想很 ...

  2. 竞赛题解 - NOIP2018 赛道修建

    \(\mathcal {NOIP2018}\) 赛道修建 - 竞赛题解 额--考试的时候大概猜到正解,但是时间不够了,不敢写,就写了骗分QwQ 现在把坑填好了~ 题目 (Copy from 洛谷) 题 ...

  3. P5021 赛道修建[贪心+二分]

    题目描述 C 城将要举办一系列的赛车比赛.在比赛前,需要在城内修建 mm 条赛道. C 城一共有 nn 个路口,这些路口编号为 1,2,-,n1,2,-,n,有 n-1n−1 条适合于修建赛道的双向通 ...

  4. P5021 赛道修建 题解

    原题链接 简要题意: 在一棵树上求 \(m\) 条不相交的路径的最小值的最大值. 本题部分分很多,而且本人也交了 \(27\) 次,所以一定要仔细讲部分分! 算法一 对于 \(b_i = a_i + ...

  5. [NOIp2018] luogu P5021 赛道修建

    我同学的歌 题目描述 你有一棵树,每条边都有权值 did_idi​.现在要修建 mmm 条赛道,一条赛道是一条连贯的链,且一条边至多出现在一条赛道里.一条赛道的长被定义为,组成这条赛道的边的权值之和. ...

  6. P5021 赛道修建 (NOIP2018)

    传送门 考场上把暴力都打满了,结果文件输入输出写错了.... 当时时间很充裕,如果认真想想正解是可以想出来的.. 问你 长度最小的赛道长度的最大值 显然二分答案 考虑如何判断是否可行 显然对于一个节点 ...

  7. 洛谷P5021 赛道修建

    题目 首先考虑二分,然后发现最小长度越大的话,赛道就越少.所以可以用最终的赛道个数来判断长度是否合理.问题转化为给定一个长度,问最多有多少条互不重叠路径比这个给定长度大. 考虑贪心,毕竟贪心也是二分c ...

  8. 洛谷P5021 赛道修建 NOIp2018 贪心+二分答案

    正解:贪心+LCA+二分答案 解题报告: 想先港下部分分qwq因为我部分分只拿到了10ptsQAQ(时间不够不是理由,其实还是太弱,所以要想很久,所以才时间不够QAQ m=1 找直径长度,完 一条链 ...

  9. 题解 NOIP2018【赛道修建】—— 洛谷

    这道题有一点点树上dp的意思(大佬轻喷 我刚拿到这道题的时候毫无头绪,只知道这道题要二分答案 为什么是二分答案??? 题目: 目前赛道修建的方案尚未确定.你的任务是设计一 种赛道修建的方案,使得修建的 ...

随机推荐

  1. CodeForces - 361E Levko and Strings

    Discription Levko loves strings of length n, consisting of lowercase English letters, very much. He ...

  2. php类中静态变量与常亮的区别

    在效率上:常量编译过程比静态变量快的多. 代码: <?php error_reporting(E_ALL); class A { const c = 9; public static $b = ...

  3. 3)nginx的启动与停止、重启,linux配置对外端口

    [启动] 启动代码格式:nginx安装目录地址 -c nginx配置文件地址例如: [root@LinuxServer sbin]# /usr/local/nginx/sbin/nginx -c /u ...

  4. popcount 算法分析

    转载: http://blog.csdn.net/gaochao1900/article/details/5646211 http://www.cnblogs.com/Martinium/archiv ...

  5. 在OpenCV中实现matlab中的im2double功能

    最近在把matlab的代码转化到VS2010上. matlab中采用im2double将读入的图像转换为double型,在OpenCV中就需要对图像进行深度的转换. 读入一幅灰度图像,深度为1(8U) ...

  6. git 指令如何撤销一次merge

    在使用git指令时难免会发生错误的merge的情况,那么如何在这种情况下回退到错误发生之前的情况? git reflog 指令显示历史的操作 4457e43 HEAD@{0}: reset: movi ...

  7. 性能测试脚本开发(C&C#&Java)

    一.C语言实现及相关问题解决 LR:C函数-功能描述 LR:C函数-适用范围 LR:C函数-头信息传递 LR:C函数-字符串编码转换 lr_convert_string_encoding(" ...

  8. Php网站如何优化才好?

    尽量静态化:    如果一个方法能被静态,那就声明它为静态的,速度可提高1/4,甚至我测试的时候,这个提高了近三倍.   当然了,这个测试方法需要在十万级以上次执行,效果才明显.   其实静态方法和非 ...

  9. ORACLE数据库导表

    今天在公司的server上面装一个系统,在数据库导表的时候一直导不进去,原先是10g的.dmp文件,导入11g.怀疑版本号不兼容,后来把.dmp表打开,把里面的版本号号改为11g,发现导入还是不行.i ...

  10. bzoj4010【HNOI2015】菜肴制作

    4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec  Memory Limit: 512 MB Submit: 981  Solved: 480 [Submit][Statu ...